c, Vì \(\left\{{}\begin{matrix}\left|x-5,4\right|\ge0\\\left|2,6-x\right|\ge0\end{matrix}\right.\) với mọi x
=>\(\left|x-5,4\right|+\left|2,6-x\right|\ge0\) với mọi x
Do đó \(\left|x-5,4\right|+\left|2,6-x\right|=0\) khi và chỉ khi \(\left\{{}\begin{matrix}\left|x-5,4\right|=0\\\left|2,6-x\right|=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=5,4\\x=2,6\end{matrix}\right.\)(vô lí)
Vậy không tồn tại x thỏa mãn đề bài.
3,c,
\(C=\left|x-500\right|+\left|x-300\right|=\left|x-500\right|+\left|300-x\right|\ge\left|x-500+300-x\right|=\left|-200\right|=200.\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-500\right)\left(300-x\right)\ge0\)
<=>\(\left(x-500\right)\left(x-300\right)\le0\)
<=>\(300\le x\le500\).