Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Trung Kiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2021 lúc 21:05

\(\overrightarrow{AB}=\left(-3;6\right)\)

\(\overrightarrow{AC}=\left(-3,5;7\right)\)

Vì \(\overrightarrow{AB}=\dfrac{7}{6}\overrightarrow{AC}\)

nên A,B,C thẳng hàng

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
28 tháng 9 2023 lúc 23:50

a) Ta có: \(\overrightarrow {AB}  = \left( {2;4} \right),\overrightarrow {AG}  = \left( {2;1} \right)\)

Do \(\overrightarrow {AB}  \ne k.\overrightarrow {AG} \) nên A, B, G không thẳng hàng

b) Giả sử C có tọa độ là: \(C\left( {{x_C};{y_C}} \right)\)

Để G là trọng tâm tam giác ABC thì: \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 3{x_G} - {x_A} - {x_B}\\{y_C} = 3{y_G} - {y_A} - {y_B}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 3.1 - \left( { - 1} \right) - 1 = 3\\{y_C} = 3.2 - 1 - 5 = 0\end{array} \right.\)

Vậy tọa độ điểm C là: \(C\left( {3;0} \right)\)

bùi lan anh
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2022 lúc 23:36

\(\overrightarrow{AB}=\left(-4;-12\right)\)

\(\overrightarrow{AC}=\left(-1;-6\right)\)

Vì -4/-1<>-12/-6

nên A,B,C ko thẳng hàng

Nguyễn Thị Anh Thư
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
8 tháng 10 2023 lúc 16:23

- Trên Hình 2, ba điểm thẳng hàng là: M, N, Q; ba điểm không thẳng hàng là M, N, P

- Trên Hình 3, ba điểm thẳng hàng là M, P, R

- Vẽ hình như sau:

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 8 2019 lúc 15:57

Gọi (Q) và (R) theo thứ tự là mặt phẳng trung trực của AB và BC.

Những điểm cách đều ba điểm A, B, C là giao tuyến ∆ = (Q) ∩ (R).

(Q) đi qua trung điểm E(3/2; 1/2; 1) của AB và có  n Q →  = AB (1; -3; 0) do đó phương trình của (Q) là: x - 3/2 - 3(y - 1/2) = 0 hay x - 3y = 0

(R) đi qua trung điểm F(1; 1; 1) của BC và có  n R →  =  BC →  = (-2; 4; 0) do đó phương trình (R) là: x - 2y + 1 = 0

Ta có:  n Q →   ∧   n R →  = (0; 0; -2).

Lấy D(-3; -1; 0) thuộc (Q)  ∩  (R)

Suy ra ∆ là đường thẳng đi qua D và có vectơ chỉ phương  u → (0; 0; 1)

nên có phương trình là: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Trần Mai Linh Nhi
Xem chi tiết
Akai Haruma
15 tháng 9 2021 lúc 18:33

Lời giải:

a. Gọi ptdt $(d)$ đi qua $A,B$ là $y=ax+b$

Ta có: \(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2=a+b\\ 1=a.0+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=1\\ a=1\end{matrix}\right.\)

Vậy ptđt $(d)$ là: $y=x+1$

b. Ta thấy: $y_C=-4=-5+1=x_C+1$ nên $C\in (d): y=x+1$
Tức là $C$ thuộc đt đi qua 2 điểm $A,B$

$\Rightarrow A,B,C$ thẳng hàng.

Nguyễn Văn Dân
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
28 tháng 9 2023 lúc 23:52

a) Ta có: \(\overrightarrow {AB}  = \left( {3;2} \right),\overrightarrow {AC}  = \left( { - 1; - 3} \right)\)

Do \(\overrightarrow {AB}  \ne k.\overrightarrow {AC} \) nên A, B, C không thẳng hàng

b) Giả sử tọa độ điểm D là:\(D\left( {{x_D},{y_D}} \right)\)

Ta có: \(\overrightarrow {CD}  = \left( {{x_D} - 0;{y_D} - \left( { - 2} \right)} \right) = \left( {{x_D};{y_D} + 2} \right)\)

Để tứ giác ABCD là hình thang có AB // CD và CD= 2AB thì \(\overrightarrow {CD}  = 2\overrightarrow {AB} \)

Vậy nên \(\overrightarrow {CD}  = 2\overrightarrow {AB}  \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 2.3\\{y_D} + 2 = 2.2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 6\\{y_D} = 2\end{array} \right.\)

Vậy tọa độ D là: \(D\left( {6;2} \right)\)