Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tên Họ
Xem chi tiết
Lê Nguyên Hạo
7 tháng 7 2016 lúc 10:59

undefined

Tên Họ
7 tháng 7 2016 lúc 11:09

Thể tích khối đa diện

Lê Nguyên Hạo
7 tháng 7 2016 lúc 11:25

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 6 2019 lúc 9:41

Giải sách bài tập Toán 11 | Giải sbt Toán 11

+ Xác định góc của SC với (SAD).

Hạ CE ⊥ AD, ta có E là trung điểm AD và CE ⊥ (SAD) nên ∠(CSE) = 30 o .

∠(CSE) cũng chính là góc giữa SC và mp(SAD).

Trong ΔCSE, ta có:

S E   =   C E . tan 60 o   =   a 3   ⇒   S A   =   S E 2 -   A E 2   =   3 a 2   -   a 2   =   a 2 .

Nhận xét

Gọi M, N lần lượt là trung điểm của AB và AE.

Ta có MN // BE nên MN // CD. Như vậy MN // (SCD). Ta suy ra

d(M,(SCD)) = d(N,(SCD)).

Mà DN/DA = 3/4 nên d(N,(SCD)) = 3/4 d(A,(SCD))

+ Xác định khoảng cách từ A đến (SCD).

Vì vậy tam giác ACD vuông cân tại C nên CD vuông góc với AC.

CD ⊥ AC & CD ⊥ SA ⇒ CD ⊥ (SAC) ⇒ (SCD) ⊥ (SAC).

Hạ AH ⊥ SC, ta có AH ⊥ (SCD).

Dương Ngọc Gia Linh
Xem chi tiết
Nguyễn Ngọc Anh Minh
20 tháng 5 2022 lúc 10:43

S A B C D H O M N P Q K E I

a/ 

Ta có

\(CB\perp AB\) (ABCD là hình vuông)

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp CB\)

\(\Rightarrow CB\perp\left(SAB\right)\) => CB=a là khoảng cách từ C đến mp (SAB)

b/ 

Trong mp (SAD) dựng đường thẳng vuông góc với SD cắt SD tại H

Ta có

\(CD\perp AD\) (ABCD là hình vuông)

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\)

\(\Rightarrow CD\perp\left(SAD\right)\Rightarrow CD\perp AH\)

Mà \(AH\perp SD\)

\(\Rightarrow AH\perp\left(SCD\right)\) => AH là khoảng cách từ A đến mp (SCD)

Xét tg vuông SAD có

\(SD=\sqrt{SA^2+AD^2}=\sqrt{2a^2+a^2}=a\sqrt{3}\) (Pitago)

Ta có

\(AD^2=DH.SD\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow DH=\dfrac{AD^2}{SD}=\dfrac{a^2}{a\sqrt{3}}=\dfrac{a\sqrt{3}}{3}\)

Xét tg vuông ADH có

\(AH=\sqrt{AD^2-DH^2}\) (Pitago)

\(\Rightarrow AH=\sqrt{a^2-\dfrac{a^2}{3}}=\dfrac{a\sqrt{6}}{3}\)

c/ Trong mp (ABCD) Qua O dựng đường thẳng //CD cắt AD tại M và BC tại N => MN//CD (1)

Trong mp (SAD) dựng đường thẳng // AH cắt SD tại Q => MQ // AH

TRong mp (SCD) qua Q dựng đường thẳng //CD cắt SC tại P => QP // CD (2)

Từ (1) và (2) => MN // PQ => M; N; P; Q cùng thuộc 1 mặt phẳng

=> PQ là giao tuyến của mp (MNQP) với mp (SCD)

Trong mp (MNQP) qua O dựng đường thẳng // với MQ cắt QP tại K

Ta có

MQ//AH; OH// MQ => OK//AH

Mà \(AH\perp\left(SCD\right)\)

\(\Rightarrow OK\perp\left(SCD\right)\) => OK là khoảng cách từ O đến mp (SCD)

Xét tứ giác MQKO có

MQ//OK; QP//MN => MQKO là hình bình hành => OK = MQ

Xét tg ACD có

OA=OC (t/c đường chéo hình vuông)

MO//CD

=> MA=MD (trong tg đường thẳng đi qua trung điểm của 1 cạnh // với cạnh thứ 2 thì đi qua trung điểm cạnh còn lai)

Xét tg ADH có

MA=MD (cmt); MQ//AH => QD = QH (trong tg đường thẳng đi qua trung điểm của 1 cạnh // với cạnh thứ 2 thì đi qua trung điểm cạnh còn lai)

=> MQ là đường trung bình của tg ADH

\(\Rightarrow OK=MQ=\dfrac{AH}{2}=\dfrac{1}{2}.\dfrac{a\sqrt{6}}{3}=\dfrac{a\sqrt{6}}{6}\)

d/

Trong mp (SCD) qua H dựng đường thẳng //CD cắt SC tại E => HE//CD

Ta có

AB // CD (Hai cạnh đối hình vuông)

HE // CD

=> AB//HE => A; B; H; E cùng thuộc một mặt phẳng

Trong mp (AHEB) qua e Dựng đường thẳng // AH cắt AB tại I

Ta có 

AH//IE; AB//HE => AHEB là hình bình hành => IE=AH

Ta có

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\)

\(AB\perp AD\) (ABCD là hình vuông)

=> \(AB\perp\left(SAD\right)\Rightarrow AB\perp AH\)

Mà AH//IE

\(\Rightarrow AB\perp IE\) (1)

Ta có

\(AH\perp\left(SCD\right)\) (cmt); mà AH//IE \(\Rightarrow IE\perp\left(SCD\right)\Rightarrow IE\perp SC\) (2)

Từ (1) và (2) => IE là khoảng cách giữa AB và SC

\(\Rightarrow IE=AH=\dfrac{a\sqrt{6}}{3}\)

 

 

 

 

 

 

trần khánh dương
Xem chi tiết
37-Trần Vi Thảo 10A15
Xem chi tiết
Nhók Lì Lợm
Xem chi tiết
Thư Hình
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 4 2023 lúc 22:47

a: BC vuông góc SA
BC vuông góc AB

=>CB vuông góc (SBA)

DC vuông góc AD

DC vuông góc SA

=>DC vuông góc (SAD)

=>(SDC) vuông góc (SAD)

b: (SC;(SAD))=(SC;SD)=góc CSD

\(SD=\sqrt{SA^2+AD^2}=2a\sqrt{7}\)

\(AC=\sqrt{\left(2a\right)^2+3a^2}=a\sqrt{7}\)

\(SC=\sqrt{SA^2+AC^2}=4a\sqrt{2}\)

\(cosCSD=\dfrac{SC^2+SD^2-DC^2}{2\cdot SC\cdot SD}=\dfrac{32a^2+28a^2-4a^2}{2\cdot2a\sqrt{7}\cdot4a\sqrt{2}}=\dfrac{\sqrt{14}}{4}\)

=>góc CSD=21 độ

(SC;(ABCD))=(CS;CA)=góc SCA

tan SCA=SA/AC=5/căn 7

=>góc SCA=62 độ

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 4 2019 lúc 9:01

Đáp án A

Phương pháp: Cách xác định góc giữa đường thẳng và mặt phẳng:

Gọi a’ là hình chiếu vuông góc của a trên mặt phẳng (P).

Góc giữa đường thẳng a và mặt phẳng (P) là góc giữa đường thẳng a và a’.

Cách giải: ABCD là hình chữ nhật 

Vì SA ⊥ (ABCD) nên (SC;(ABCD)) = (SC;AC) =  S C A ^

Ta có: AB//CD, CD ⊂ (SCD) => d(B;(SCD)) = d(A;(SCD))

Kẻ AH ⊥ SD, H ∈ SD

Ta có: 

Mà AH ⊥ SD => AH ⊥ (SCD) => d(A;(SCD)) = AH

Tam giác SAD vuông tại A,

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 4 2019 lúc 10:48

Jennyle11
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 1 2021 lúc 21:22

Do \(OC=\dfrac{1}{2}AC\Rightarrow d\left(O;\left(SCD\right)\right)=\dfrac{1}{2}d\left(A;\left(SCD\right)\right)\)

Kẻ \(AH\perp SD\Rightarrow AH\perp\left(SCD\right)\)

\(\Rightarrow AH=d\left(A;\left(SCD\right)\right)\)

\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AD^2}\Rightarrow AH=\dfrac{SA.AD}{\sqrt{SA^2+AD^2}}=\sqrt{2}\)

\(\Rightarrow d\left(O;\left(SCD\right)\right)=\dfrac{1}{2}AH=\dfrac{\sqrt{2}}{2}\)