Tính giá trị của biểu thức
\(\dfrac{x-8}{y-5}-\dfrac{4x-y}{3x+3}\) với \(x-y=3;y\ne5;x\ne-1\)
Tính giá trị của biểu thức:
\(E=\dfrac{3x^2+5y^2}{4x^2-y^2}\) tại \(\dfrac{x}{2}=\dfrac{y}{3}\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\)
Ta có: \(E=\dfrac{3x^2+5y^2}{4x^2-y^2}\)
\(=\dfrac{3\cdot\left(2k\right)^2+5\cdot\left(3k\right)^2}{4\cdot\left(2k\right)^2-\left(3k\right)^2}=\dfrac{3\cdot4k^2+5\cdot9k^2}{4\cdot4k^2-9k^2}\)
\(=\dfrac{12k^2+45k^2}{16k^2-9k^2}=\dfrac{57k^2}{7k^2}=\dfrac{57}{7}\)
Cho tỉ lệ thức \(\dfrac{x}{y}=\dfrac{2}{3}\). Tính giá trị của các biểu thức sau:
\(A=\dfrac{x+5y}{3x-2y}-\dfrac{2x-3y}{4x+5y}\)
\(B=\dfrac{2x^2-xy+3y^2}{3x^2+2xy+y^2}\)
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
Cho biểu thức A=(\(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\)):(x-2 + \(\dfrac{10-x^2}{x+2}\))
a)Rút gọn A
b)Tính giá trị x của A với giá trị của x thỏa mãn |2x-1|=3
c) Tìm x để (3-4x).A<3
d) Tìm giá trị nhỏ nhất của biểu thức B=(8-\(^{x^3}\)).A+x
\(\dfrac{x^3-4x^2y+3y^2-4}{3x^3-3y^2-3y}\) tính giá trị biểu thức B khi x=\(\dfrac{1}{2}\) ; y=-1
Thay \(x=\dfrac{1}{2};y=-1\) vào B, ta được:
\(B=\left[\left(\dfrac{1}{2}\right)^3-4\cdot\left(\dfrac{1}{2}\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)^2-4\right]:\left[3\cdot\left(\dfrac{1}{2}\right)^3-3\cdot\left(-1\right)^2-3\cdot\left(-1\right)\right]\)
\(=\left(\dfrac{1}{8}+4\cdot\dfrac{1}{4}+3\cdot1-4\right):\left(3\cdot\dfrac{1}{8}-3\cdot1+3\right)\)
\(=\left(\dfrac{1}{8}+1+3-4\right):\left(\dfrac{3}{8}-3+3\right)\)
\(=\dfrac{1}{8}\cdot\dfrac{8}{3}=\dfrac{1}{3}\)
Cho biểu thức: P =(\(\dfrac{x+2}{3x}+\dfrac{2}{x+1}-3\)) : \(\dfrac{2-4x}{x+1}-\dfrac{3x-x^2+1}{3x}\)
a) Tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tính giá trị của M với \(\left|2x-5\right|=5\)
d) Với giá trị nào của x thì P = \(\dfrac{-1}{2}\)
e) Tìm các giá trị của x để M \(\ge-1\)
f) Tìm các giá trị x nguyên để \(\dfrac{1}{M}\) nhận giá trị nguyên
Tính giá trị của biểu thức sau:
a) \(3x-5y+1\) tại \(x=\dfrac{1}{3}\) ; \(y=-\dfrac{1}{5}\) b) \(3x^2-2x-5\) tại \(x=1\) ; \(x=-1\)
\(a.3x-5y+1=3.\dfrac{1}{3}-5.\left(-\dfrac{1}{5}\right)+1=1+1+1=3\)
b.x=1
\(\Rightarrow3.1^2-2.1-5=-4\)
x=-1
\(\Rightarrow3.\left(-1\right)^2-2.\left(-1\right)-5=3+2-5=0\)
Tìm tập xác định của biểu thức, rút gọn biểu thức, rồi tính giá trị của biểu thức với x = \(\dfrac{1}{3}\) , y = -2:
[\(\dfrac{2x}{2x-3y}\) - \(\dfrac{9y^2\left(3y+4x\right)}{8x^3-37y^3}\) - \(\dfrac{24xy}{4x^2+6xy+9y^2}\)][2x + \(\dfrac{3y\left(3y+4x\right)}{2x-3y}\)]
Đặt bthuc = A nhé
ĐKXĐ : \(2x\ne3y\)
\(A=\left[\dfrac{2x\left(4x^2+6xy+9y^2\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{27y^3+36xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{24xy\left(2x-3y\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{2x\left(2x-3y\right)}{\left(2x-3y\right)}+\dfrac{9y^2+12xy}{\left(2x-3y\right)}\right]\)\(=\left[\dfrac{8x^3+12x^2y+18xy^2-27y^3-36xy^2-48x^2y+72xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{4x^2-6xy+9y^2+12xy}{\left(2x-3y\right)}\right]\)
\(=\dfrac{8x^3-36x^2y+36xy^2-27y^3}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\cdot\dfrac{4x^2+6xy+9y^2}{2x-3y}\)
\(=\dfrac{\left(2x-3y\right)^3}{\left(2x-3y\right)^2}=2x-3y\)
Với x = 1/3 ; y = -2 (tmđk) thay vào A ta được : A = 2.1/3 - 3.(-2) = 20/3
Cho tỉ lệ thức : \(\dfrac{x}{y}\) = \(\dfrac{2}{3}\). Tính giá trị của các biểu thức :
A = \(\dfrac{3x+5y}{7x-2y}\)
B = \(\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\)
Tính giá trị của biểu thức sau :
c) C=\(\dfrac{x^3}{2}\)+\(\dfrac{x^2y}{4}\)+\(\dfrac{xy^2}{6}\)+\(\dfrac{y^3}{27}\)với x=-8;y=6
có áp dụng bảy hàng đẳng thức đáng nhớ
Thay x=-8 và y=6 cào C ta được:
\(C=\dfrac{\left(-8\right)^3}{2}+\dfrac{\left(-8\right)^2.6}{4}+\dfrac{\left(-8\right).6^2}{6}+\dfrac{6^3}{27}\)\(=\dfrac{-512}{2}+\dfrac{384}{4}-\dfrac{288}{6}+\dfrac{216}{27}\)\(=-256+96-48+8=-200\)
\(C=x^2\left(\dfrac{x}{2}+\dfrac{y}{4}\right)+y^2\left(\dfrac{x}{6}+\dfrac{y}{27}\right)=\left(-8\right)^2\left(-\dfrac{8}{2}+\dfrac{6}{4}\right)+6^2\left(-\dfrac{8}{6}+\dfrac{6}{27}\right)=-200\)