chứng minh rằng :
a, x+2y+dfrac{25}{x}+dfrac{27}{y^2}ge 19 ( forallx,y 0 )
b, x+dfrac{1}{left(x-yright)y}ge3 ( forallxy0 )
c,dfrac{x}{2}+dfrac{16}{x-2}ge13left(forall x2right)
d, a+dfrac{1}{a^2}gedfrac{9}{4}left(forall xge2right)
e, a+dfrac{1}{aleft(a-bright)^2}ge2sqrt{2} ( forall xyge0)
f, dfrac{2a^3+1}{4bleft(a-bright)}ge3[forall agedfrac{1}{2};dfrac{a}{b}1]
g, x+dfrac{4}{left(x-yright)left(y+1right)^2}ge3left(forall xyge0right)
h, 2a^4+dfrac{1}{1+a^2}ge3a^2-1
Đọc tiếp
chứng minh rằng :
a, x+2y+\(\dfrac{25}{x}\)+\(\dfrac{27}{y^2}\)\(\ge\) 19 ( \(\forall\)x,y \(\)> 0 )
b, \(x+\dfrac{1}{\left(x-y\right)y}\ge3\) ( \(\forall\)x>y>0 )
c,\(\dfrac{x}{2}+\dfrac{16}{x-2}\ge13\left(\forall x>2\right)\)
d, \(a+\dfrac{1}{a^2}\ge\dfrac{9}{4}\left(\forall x\ge2\right)\)
e, a+\(\dfrac{1}{a\left(a-b\right)^2}\ge2\sqrt{2}\) ( \(\forall x>y\ge0\))
f, \(\dfrac{2a^3+1}{4b\left(a-b\right)}\ge3[\forall a\ge\dfrac{1}{2};\dfrac{a}{b}>1]\)
g, x+\(\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}\ge3\left(\forall x>y\ge0\right)\)
h, \(2a^4+\dfrac{1}{1+a^2}\ge3a^2-1\)