giai he pt pt(1): x2(y+3)(x+2)-\(\sqrt{2x+3}\)=0 ;pt(2): 4x -4\(\sqrt{2x+3}\) +x3\(\sqrt{\left(y+3\right)^3}\) +9=0
\(\hept{\begin{cases}x\left(2\sqrt{y-1}-x\right)+y\left(2\sqrt{x-1}-y\right)=0\\x^3+y^3=16\end{cases}}\)
giai he pt
1. Cho pt: x2 -2(m+1)x+m2=0 (1). Tìm m để pt có 2 nghiệm x1 ; x2 thỏa mãn (x1-m)2 + x2=m+2.
2. Giai pt: \(\left(x-1\right)\sqrt{2\left(x^2+4\right)}=x^2-x-2\)
3. Giai hệ pt: \(\left\{{}\begin{matrix}\frac{1}{\sqrt[]{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{matrix}\right.\)
4. Giai pt trên tập số nguyên \(x^{2015}=\sqrt{y\left(y+1\right)\left(y+2\right)\left(y+3\right)}+1\)
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 1 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 2 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 3 nghiệm phân biệt
ĐKXĐ: \(x\ge0\)
\(\left(x^2-x-m\right)\sqrt{x}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)
Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm
Do đó:
a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm
\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)
b. Để pt có 2 nghiệm pb
TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0
\(\Leftrightarrow m=0\)
TH2: (1) có 2 nghiệm trái dấu
\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)
\(\Rightarrow m\ge0\)
c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)
cho pt\(\left\{{}\begin{matrix}\left(1-\sqrt{2}\right)x+my=5\\mx+\left(1+\sqrt{2}\right)y=3\end{matrix}\right.\)
giai he pt khi m=1+\(\sqrt{2}\)
voi m khác 0 tìm 3 để hpt có nghiệm duy nhất
1.Số nghiệm của pt x2 -2x-8=4 căn (4-x)(x+2)
2.Cho hình vuông ABCD Tính (vectơ AB,BD)
3. Tìm m để hệ pt y+x2=x(1) 2x+y-m=0 Có nghiệm.
giai pt:\(x^3-x^2+2x-9+\sqrt{x-1}=0\)
Giai PT 2x+1 +x\(\sqrt{x^2+2}\)+(x+1)\(\sqrt{x^2+2x+3}\)= 0
Copy trên mạng nè:
Try the following:Use different phrasing or notationsEnter whole words instead of abbreviationsAvoid mixing mathemaal and other notationsCheck your spellingGive your input in EnglishOther tips for using Wolfram|Alpha:Wolfram|Alpha answers specific questions rather than explaining general topicsEnter "2 cups of sugar", not "nutrition information"You can only get answers about objective factsTry "highest mountain", not "most beautiful painting"Only what is known is known to Wolfram|AlphaAsk "how many men in Mauritania", not "how many monsters in Loch Ness"Only public information is availableRequest "GDP of France", not "home phone of Michael Jordan"Examples by Topic Quick video overviewInput: Result: Plot: Alternate forms: Complex solutions:Approximate formsStep-by-step solution Roots in the complex plane:cho he phuong trinh:
\(\left\{{}\begin{matrix}x+2y=m+1\\2x+3y=m-2\end{matrix}\right.\)
a. Giai he pt vs m=1
b. Tim m de he pt co nghiem (x;y) thoa man \(\left\{{}\begin{matrix}x>3\\y< 5\end{matrix}\right.\)
a) Thay m=1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+2y=2\\2x+3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=4\\2x+3y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x+10=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=5\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(-8;5)
b) Ta có: \(\left\{{}\begin{matrix}x+2y=m+1\\2x+3y=m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2m+2\\2x+3y=m-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=m+4\\x+2\cdot\left(m+4\right)=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2m+8=m+1\\y=m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-m-7\\y=m+4\end{matrix}\right.\)
Để hệ phương trình có nghiệm (x,y) thỏa mãn x>3 và y<5 thì \(\left\{{}\begin{matrix}-m-7>3\\m+4< 5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-m>10\\m< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -10\\m< 1\end{matrix}\right.\Leftrightarrow m< -10\)
Vậy: Để hệ phương trình có nghiệm (x,y) thỏa mãn x>3 và y<5 thì m<-10
Giải pt:
1. (\(\sqrt{9-x^2}\)-2x).(x\(^3\)+x\(^2\)-12x+10)=0 2. cos3x+2cos\(^2\)(x+\(\dfrac{\pi}{6}\))=1
Bài 2 Tìm tập xác định của hàm số y = \(\dfrac{\sqrt{1-sin2x}}{cos3x}\)
Bài 3 : cho pt (cosx+1)(cos-2x-mcosx)=msin\(^2\) x
tìm m để pt có đúng 2 nghiệm phân biệt thuộc \([0;\dfrac{2\pi}{3}\)\(]\)
bài 4: cho hàm số y= x\(^3\)-2mx\(^2\)+(7m-8)x-5m=10 có đồ thị (C\(_m\)) và đường thẳng d: y=x+m. tìm m để d cắt ( C\(_m\)) tai ba điểm phân biêt
giúp e với mn ơiiii