a+b+c=3 chứng minh \(a^4+b^4+c^4\ge a^3+b^3+c^3\)
Chứng minh rằng : \(3.\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right).\left(a^3+b^3+c^3\right)\)
Biết rằng \(a;b;c\in R\)
Lời giải:
BĐT cần cm tương đương với:
$2(a^4+b^4+c^4)\geq ab^3+bc^3+ca^3+a^3b+b^3c+c^3a$
$\Leftrightarrow (a^4+b^4-a^3b-ab^3)+(b^4+c^4-b^3c-bc^3)+(c^4+a^4-ca^3-c^3a)\geq 0$
$\Leftrightarrow (a-b)^2(a^2+ab+b^2)+(b-c)^2(b^2+bc+c^2)+(c-a)^2(c^2+ca+a^2)\geq 0$
Điều này luôn đúng do:
$(a-b)^2\geq 0; a^2+ab+b^2=(a+\frac{b}{2})^2+\frac{3b^2}{4}\geq 0$ với mọi $a,b\in\mathbb{R}$ và tương tự với 2 đa thức còn lại)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c$
Do bđt đối xứng nên ta giả sử: \(a\ge b\ge c\)
Áp dụng Chebyshev cho hai dãy đơn điệu tăng (a;b;c) và(a^3;b^3;c^3):
\(a^4+b^4+c^4=a.a^3+b.b^3+c.^3\ge\dfrac{1}{3}\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
Cho a + b + c = 3. Chứng minh rằng \(a^4+b^4+c^4\ge a^3+b^3+c^3\)
Làm luôn:v
\(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\)*Đúng*
P/s: kiểm tra giúp xem em có tính sai chỗ nào ko nha! Dạo hay em hay nhầm lẫn lắm:(
Cho \(a,b,c>0\) thỏa mãn \(a^4+b^4+c^4=3\). Chứng minh:
\(\dfrac{a^2}{b^3+1}+\dfrac{b^2}{c^3+1}+\dfrac{c^2}{a^3+1}\ge\dfrac{3}{2}\)
Chứng minh rằng
a, \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\))
b, \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
c, \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\)
c) Áp dụng BĐT Cauchy-schwars ta có:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+b\right)^2}{a+b+c}=a+b+c\)
đpcm
a) \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
<=> \(a^4+b^4\ge ab\left(a^2+b^2\right)\)
Ta có: \(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}=\frac{a^2+b^2}{2}.\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\) với mọi a, b
Vậy \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
Dấu "=" xảy ra <=> a = b
b) \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)(1)
<=> \(2\left(a^4+b^4+c^4\right)\ge ab^3+ac^3+ba^3+bc^3+ca^3+cb^3\)
<=> \(\left(a^4+b^4\right)+\left(b^4+c^4\right)+\left(c^4+a^4\right)\ge ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ac\left(a^2+c^2\right)\) đúng áp dụng câu a
Vậy (1) đúng
Dấu "=" xảy ra <=> a = b = c.
Hoac cau c lam nhu the nay:
\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2}{b}\cdot b}=2a\)
\(\frac{b^2}{c}+c\ge2\sqrt{\frac{b^2}{c}\cdot c}=2b\)
\(\frac{c^2}{a}+a\ge2\sqrt{\frac{c^2}{a}\cdot a}=2c\)
\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\)
cmr: Với a, b, c > 0 chứng minh rằng 4/a + 5/b + 3/c ≥ 4(3/(a + b) + 2/(b + c) + 1/(c + a))
Ta có:
\(\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)
\(\Leftrightarrow\dfrac{3a\left(a+b\right)+3b\left(a+b\right)-12ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\dfrac{3a^2+3ab+3ab+3b^2-12ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\dfrac{3a^2+3b^2-6ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\dfrac{3\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\) ( luôn đúng)
Tương tự ta có:
\(\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)
Cộng vế (1) (2)(3) ta được:
\(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{2}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{12}{a+b}+\dfrac{8}{b+c}+\dfrac{4}{c+a}\)
\(\Leftrightarrow\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\)
Chứng minh rằng:
a, \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
b, \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
c, \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)
d, \(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
a.
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+a^3b+b^4\)
\(\Leftrightarrow a^4+b^4\ge ab^3+a^3b\)
\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(*)
Mà \(a^2+ab+b^2=\left(a^2+2\cdot a\cdot\dfrac{1}{2}b+\dfrac{b^2}{4}\right)+\dfrac{3b^2}{4}=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\)
Suy ra (*) đúng => đpcm
Dấu "=" xảy ra khi a = b
b.
\(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
\(\Leftrightarrow3a^4+3b^4+3c^4\ge a^4+ab^3+ac^3+a^3b+b^4+bc^3+a^3c+b^3c+c^4\)
\(\Leftrightarrow2a^4+2b^4+2c^4\ge ab^3+a^3b+b^3c+bc^3+ca^3+c^3a\)
\(\Leftrightarrow\left(a^4+b^4\right)+\left(b^4+c^4\right)+\left(c^4+a^4\right)\ge\left(a^3b+ab^3\right)+\left(b^3c+bc^3\right)+\left(c^3a+ca^3\right)\)
Theo câu a. thì điều này đúng
Dấu "=" khi a=b=c
c. Theo bất đẳng thức Cauchy-Schwarz, ta có:
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{b+c+a}=a+b+c\left(dpcm\right)\)
Dấu "=" xảy ra khi \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Leftrightarrow a=b=c\)
cho số thực a;b;c sao cho a+b+c=3.chứng minh \(a^4+b^4+c^4\ge a^3+b^3+c^3\)
Áp dụng Côsi: \(a^4+a^4+a^4+1\ge4\sqrt[4]{a^4.a^4.a^4.1}=4a^3\)
Tương tự: \(3b^4+1\ge4b^3;3c^4+1\ge4c^3\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)+3\ge4\left(a^3+b^3+c^3\right)\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge4\left(a^3+b^3+c^3\right)-3\)
Ta cần chứng minh: \(a^3+b^3+c^3\ge3\)
Ta có: \(a^3+1+1\ge3\sqrt[3]{a^3}=3a\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge3\left(a^3+b^3+c^3\right)+a^3+b^3+c^3-3\ge3\left(a^3+b^3+c^3\right)\)
\(\Rightarrow a^4+b^4+c^4\ge a^3+b^3+c^3\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)
Nhìn bên phải, bấm vô thống kê hỏi đáp ạ, VÀO TRANG CÁ NHÂN CỦA E Em bức xúc lắm anh chị ạ, xl mấy anh chị vì đã gây rối Thiệt tình là ko chấp nhận nổi con nít ms 2k6 mà đã là vk là ck r ạ, bày đặt yêu xa, chưa lên đại học Đây là \'tội nhân\' https://olm.vn/thanhvien/nhu140826 và https://olm.vn/thanhvien/trungkienhy79
cho ba số thực thỏa mãm a+b+c =3 chứng minh rằng \(a^4+b^4+c^4\ge a^3+b^3+c^3\)
Áp dụng BĐT Holder:
$(a^4+b^4+c^4)^3.(1+1+1)\geq (a^3+b^3+c^3)^4 \geq (a^3+b^3+c^3)^3.\dfrac{(a+b+c)^3}{9}$
$=3(a^3+b^3+c^3)^3$
$\Rightarrow a^4+b^4+c^4\geq a^3+b^3+c^3$
Cho a,b,c>0.Chứng minh rằng
\(\frac{a^4}{b+c}+\frac{b^4}{c+a}+\frac{c^4}{a+b}\ge\frac{a^3+b^3+c^3}{2}\)