§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Kim Oanh

Chứng minh rằng :      \(3.\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right).\left(a^3+b^3+c^3\right)\)

Biết rằng   \(a;b;c\in R\)

Akai Haruma
30 tháng 9 2021 lúc 17:39

Lời giải:

BĐT cần cm tương đương với:
$2(a^4+b^4+c^4)\geq ab^3+bc^3+ca^3+a^3b+b^3c+c^3a$

$\Leftrightarrow (a^4+b^4-a^3b-ab^3)+(b^4+c^4-b^3c-bc^3)+(c^4+a^4-ca^3-c^3a)\geq 0$

$\Leftrightarrow (a-b)^2(a^2+ab+b^2)+(b-c)^2(b^2+bc+c^2)+(c-a)^2(c^2+ca+a^2)\geq 0$

Điều này luôn đúng do:

$(a-b)^2\geq 0; a^2+ab+b^2=(a+\frac{b}{2})^2+\frac{3b^2}{4}\geq 0$ với mọi $a,b\in\mathbb{R}$ và tương tự với 2 đa thức còn lại)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$ 

Minhmetmoi
30 tháng 9 2021 lúc 20:21

Do bđt đối xứng nên ta giả sử: \(a\ge b\ge c\)

Áp dụng Chebyshev cho hai dãy đơn điệu tăng (a;b;c) và(a^3;b^3;c^3):

\(a^4+b^4+c^4=a.a^3+b.b^3+c.^3\ge\dfrac{1}{3}\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)


Các câu hỏi tương tự
Phan Thanh Tâm
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Phan Đình Trường
Xem chi tiết
Thư Trần
Xem chi tiết
Linh Châu
Xem chi tiết
Lông_Xg
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
phạm thảo
Xem chi tiết
muon tim hieu
Xem chi tiết