tìm m biết :(m-\(\sqrt{m}+1\))(m+\(\sqrt{m}+1\))(m2-m+1)=1
M=\(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
x>-0;x/khác1
1:RÚT/GỌN/M
2:TÍNH/GIÁ/TRỊ/CỦA/M/KHI/X=9
3:TÌM/GIÁ/TRỊ/NHỎ/NHẤT/CỦA/M
\(M=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\left(x\ge0,x\ne1\right)\)
\(=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)\(=\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}\)
2) Thay x=9 vào M đã rút gọn ta được:
\(M=\dfrac{\sqrt{9}-1}{9+\sqrt{9}+1}=\dfrac{2}{13}\)
3) Có \(M=\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}\)
\(\Leftrightarrow x.M+\sqrt{x}\left(M-1\right)+1+M=0\) (*)
Tại x=0 pt (*) <=> M=-1 (1)
Tại x khác 0, coi pt (*) là pt bậc 2 ẩn \(\sqrt{x}\)
Pt (*) có nghiệm không âm <=> \(\left\{{}\begin{matrix}\Delta\ge0\\S\ge0\\P\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3M^2-6M+1\ge0\\\dfrac{1-M}{M}\ge0\\\dfrac{1+M}{M}\ge0\end{matrix}\right.\)
\(\Rightarrow0< M\le\dfrac{-3+2\sqrt{3}}{3}\) (2)
Từ (1) (2)=> \(M_{min}=-1\) <=> x=0
1. Cho hàm số : y=x2 - 3mx + m2 + 1 (1) ,m là tham số
a, Cho dt (d) y= mx + m2 . tìm m để đồ thị (1) cắt (d) tại 2 điểm phân biệt có hoành độ x1 ,x2 thoả mãn \(\left|\sqrt{x_1}-\sqrt{x_2}\right|\)
- Xét phương trình hoành độ giao điểm :
\(x^2-3mx+m^2+1=mx+m^2\)
\(\Leftrightarrow x^2-4mx+1=0\) ( 1 )
Có : \(\Delta^,=4m^2-1\)
- Để (d) cắt ( P ) tại 2 điểm phân biệt trên trục hoành
<=> Phương trình ( 1 ) có 2 nghiệm phân biệt .
<=> \(\Delta^,=4m^2-1\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{1}{2}\end{matrix}\right.\)
- Theo viets : \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=1\end{matrix}\right.\)
( đến đây giải nốt nhá hình như thiếu đề đoạn thỏa mãn :vvv )
Biết \(\sqrt{3x-x^2}\) +\(\sqrt{x^2-6x=13}\) =\(\sqrt{\left(x-1\right)\left(5-x\right)}\)(1) là phương trình hệ quả của phương trình \(\sqrt{m-x}\) =\(\sqrt{x+1}\) +\(\sqrt{4-x}\). Tìm m.
A.m=1 B.m=12 C.m=9 D.Không tồn tại m.
Tìm m để các hàm số sau là hàm số bậc nhất:
a. y = (2m - 1)x + 3
b. y = \(\dfrac{m-2}{2m+1}x+5\)
c. y = \(\sqrt{m-2}.x-4\)
d. y = (m2 - 9)x2 + (m - 3)x + 5
1) M=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\)
a) Rút gọn M ( đkxđ )
b) Tìm x để M= - 1/2
c) Tìm x để M >1 ; M<1
Cho biểu thức
\(M=\left(\frac{2\sqrt{a}}{3\sqrt{a}+1}+\frac{\sqrt{a}-2}{1-3\sqrt{a}}-\frac{5\sqrt{a}+3}{9a-1}\right):\left(1-\frac{2\sqrt{a}-6}{3\sqrt{a}-1}\right)\)
a) Tìm a để M có nghĩa
b) Rút gọn M
c) Tính giá trị của M biết \(a=9-4\sqrt{5}\)
d) Tìm GTNN của M
a/ Điều kiện \(\hept{\begin{cases}a\ge0\\a\ne\frac{1}{9}\end{cases}}\) \(\Rightarrow0\le a\ne\frac{1}{9}\)
b/ \(M=\left(\frac{2\sqrt{a}}{3\sqrt{a}+1}+\frac{\sqrt{a}-2}{1-3\sqrt{a}}-\frac{5\sqrt{a}+3}{9a-1}\right):\left(a-\frac{2\sqrt{a}-6}{3\sqrt{a}-1}\right)\)
\(=\frac{2\sqrt{a}\left(1-3\sqrt{a}\right)+\left(\sqrt{a}-2\right)\left(1+3\sqrt{a}\right)+5\sqrt{a}+3}{\left(1-3\sqrt{a}\right)\left(1+3\sqrt{a}\right)}:\left(\frac{3a\sqrt{a}-2\sqrt{a}+6-a}{3\sqrt{a}-1}\right)\)
\(=\frac{2\sqrt{a}-6a+\sqrt{a}+3a-2-6\sqrt{a}+5\sqrt{a}+3}{\left(1-3\sqrt{a}\right)\left(1+3\sqrt{a}\right)}.\left(\frac{3\sqrt{a}-1}{3a\sqrt{a}-2\sqrt{a}+6-a}\right)\)
\(=\frac{3a-2\sqrt{a}-1}{1+3\sqrt{a}}.\frac{1}{3a\sqrt{a}-2\sqrt{a}+6-a}\)
\(=\frac{\left(3\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{1+3\sqrt{a}}.\frac{1}{3a\sqrt{a}-2\sqrt{a}+6-a}\)
\(=\frac{\sqrt{a}-1}{3a\sqrt{a}-2\sqrt{a}+6-a}\)
Hình như đề sai rồi bạn :(
a/ Điều kiện xác định : \(\hept{\begin{cases}a\ge0\\a\ne9\end{cases}\Leftrightarrow}0\le a\ne9\)
b/ \(M=\left(\frac{2\sqrt{a}}{3\sqrt{a}+1}+\frac{\sqrt{a}-2}{1-3\sqrt{a}}-\frac{5\sqrt{a}+3}{9a-1}\right):\left(1-\frac{2\sqrt{a}-6}{3\sqrt{a}-1}\right)\)
\(=\frac{2\sqrt{a}\left(3\sqrt{a}-1\right)+\left(2-\sqrt{a}\right)\left(3\sqrt{a}+1\right)-5\sqrt{a}-3}{\left(3\sqrt{a}+1\right)\left(3\sqrt{a}-1\right)}:\frac{\sqrt{a}+5}{3\sqrt{a}-1}\)
\(=\frac{6a-2\sqrt{a}+6\sqrt{a}+2-3a-\sqrt{a}-5\sqrt{a}-3}{\left(3\sqrt{a}+1\right)\left(3\sqrt{a}-1\right)}.\frac{3\sqrt{a}-1}{\sqrt{a}+5}\)
\(=\frac{3a-2\sqrt{a}-1}{3\sqrt{a}+1}.\frac{1}{\sqrt{a}+5}\)
\(=\frac{\left(3\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(3\sqrt{a}+1\right)\left(\sqrt{a}+5\right)}=\frac{\sqrt{a}-1}{\sqrt{a}+5}\)
c/ \(a=9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\) thay vào M được
\(\frac{\sqrt{5}-2-1}{\sqrt{5}-2+5}=\frac{\sqrt{5}-3}{\sqrt{5}+3}=\frac{-7+3\sqrt{5}}{2}\)
d/ \(M=\frac{\sqrt{a}-1}{\sqrt{a}+5}=\frac{\sqrt{a}+5-6}{\sqrt{a}+5}=1-\frac{6}{\sqrt{a}+5}\)
Với mọi \(0\le a\ne9\) thì ta luôn có \(\sqrt{a}+5\ge5\Leftrightarrow\frac{6}{\sqrt{a}+5}\le\frac{6}{5}\Leftrightarrow-\frac{6}{\sqrt{a}+5}\ge-\frac{6}{5}\Leftrightarrow1-\frac{6}{\sqrt{a}+5}\ge1-\frac{6}{5}\)
\(\Rightarrow M\ge-\frac{1}{5}\)
Đẳng thức xảy ra khi a = 0
Vậy giá trị nhỏ nhất của M bằng \(-\frac{1}{5}\) khi a = 0
Tìm m để phtrình \(3\sqrt{x-1}+m\sqrt{x+1}=2\sqrt[4]{x^2-1}\) có nghiệm
A. \(m\le\dfrac{1}{3}\) B. \(m\le1\) C. \(-1< m\le\dfrac{1}{3}\) D. \(-1\le m\le\dfrac{1}{3}\)
ĐKXĐ: \(x\ge1\)
\(3\sqrt[]{x-1}+m\sqrt[]{x+1}=2\sqrt[4]{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow3\sqrt[]{\dfrac{x-1}{x+1}}+m=2\sqrt[4]{\dfrac{x-1}{x+1}}\)
Đặt \(\sqrt[4]{\dfrac{x-1}{x+1}}=t\Rightarrow0\le t< 1\)
\(\Rightarrow3t^2+m=2t\Leftrightarrow-3t^2+2t=m\)
Xét \(f\left(t\right)=-3t^2+2t\) trên \([0;1)\)
\(f'\left(t\right)=-6t+2=0\Rightarrow t=\dfrac{1}{3}\)
\(f\left(0\right)=0;f\left(\dfrac{1}{3}\right)=\dfrac{1}{3};f\left(1\right)=-1\)
\(\Rightarrow-1< f\left(t\right)\le\dfrac{1}{3}\)
\(\Rightarrow-1< m\le\dfrac{1}{3}\)
B1: Cho biểu thức M = \(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}:\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}-3}{\sqrt{a}-1}\right)\)
a) tìm điều kiện của A để M đc xđ
b) rút gọn M
c) tìm điều kiện của A để M > 0
B2: Tìm x biết : \(\sqrt{9x+45}-2\sqrt{5+x}=7\)
Bài 2:
\(\Leftrightarrow3\sqrt{x+5}-2\sqrt{x+5}=7\)
\(\Leftrightarrow\sqrt{x+5}=7\)
=>x+5=25
hay x=18
Tìm m để hàm số y đồng biến trên R
a, y = mx - x2 - 2x + mx2 + m
b, (m2 - 3m +2).x2 + (m - 1).x + \(\sqrt{3}\)
Lời giải:
a. $y=mx-x^2-2x+mx^2+m=x^2(m-1)+x(m-2)+m$
Lấy $x_1,x_2\in R$ sao cho $x_1\neq x_2$
$y(x_1)=x_1^2(m-1)+x_1(m-2)+m$
$y(x_2)=x_2^2(m-1)+x_2(m-2)+m$
Để hàm đồng biến thì:
$\frac{y(x_1)-y(x_2)}{x_1-x_2}>0$
$\Leftrightarrow \frac{x_1^2(m-1)+x_1(m-2)+m-[x_2^2(m-1)+x_2(m-2)+m]}{x_1-x_2}>0$
$\Leftrightarrow \frac{(m-1)(x_1^2-x_2^2)+(m-2)(x_1-x_2)}{x_1-x_2}>0$
$\Leftrightarrow (m-1)(x_1+x_2)+(m-2)>0$
Với mọi $x_1,x_2\in\mathbb{R}$ thì không có cơ sở để tìm $m$ sao cho hàm đồng biến.
b.
Xét tương tự câu 1, với $x_1\neq x_2\in \mathbb{R}$ thì hàm đồng biến khi:
$(m^2-3m+2)(x_1+x_2)+(m-1)>0$
Với mọi $x_1, x_2\in\mathbb{R}$ thì điều này xảy ra khi:
$m^2-3m+2=0$ và $m-1>0$
$\Leftrightarrow (m-1)(m-2)=0$ và $m-1>0$
$\Leftrightarrow m=2$
Rút gọn M , tìm đkxđ của M
Biết M=\(\dfrac{1+\sqrt{1-x}}{1-x+\sqrt{1-x}}+\dfrac{1-\sqrt{1+x}}{1+x-\sqrt{1+x}}+\dfrac{1}{\sqrt{1+x}}\)
đkxđ: -1 < x < 1
Đặt: 1 + x = a (a>0) ; 1 - x = b (b>0)
\(M=\dfrac{1+\sqrt{b}}{b+\sqrt{b}}+\dfrac{1-\sqrt{a}}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}}=\dfrac{1+\sqrt{b}}{\sqrt{b}\left(1+\sqrt{b}\right)}-\dfrac{1-\sqrt{a}}{\sqrt{a}\left(1-\sqrt{a}\right)}+\dfrac{1}{\sqrt{a}}=\dfrac{1}{\sqrt{b}}-\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{a}}=\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}}+\dfrac{1}{\sqrt{a}}=\dfrac{a+\sqrt{ab}-\sqrt{ab}}{\sqrt{a}\cdot\sqrt{ab}}=\dfrac{a}{a\sqrt{b}}=\dfrac{1}{\sqrt{b}}=\dfrac{1}{\sqrt{1-x}}\)