Cho đa thức f(x)=\(x^4\) - 987\(x^2\) + 1. Chứng tỏ f(1) - f(-1) =0
Cho đa thức f(x) = ax2+bx+c . Biết 7a + b=0. Chứng tỏ rằng f(10). f(-3) ≥ 0
Vì 7a + b =0 nên b= -7a
Do đó : f(x) = ax2 + bx +c
= ax2 - 7ax +c
f(10) = 100a - 70a +c
=30a + c
f(-3) = 9a + 21a + c
= 30a +c
Vậy f(10).f(-3)= (30a + c ) 2 \(\ge\) 0
Cho đa thức f(x)=ax²+bx+c
A, biết f(0)=0, f(1)=2013 và f(-1)=2012. Tính a b c
B, Chứng minh rằng nếu f(1)=2012; f(-2)=f(-3)=2036 thì đa thức f(x) vô nghiệm
cho đa thức f(x) = a4x4 + a3x3 + a2x2 + a1x +a0. biết f(1) = f(-1), f(2) = f(-2). chứng minh f(x) = f(-x)
Cho F(x) là một đa thức bậc 4. Biết rằngF(1)=F(-1);F(2)=F(-2)
Chứng minh rằng F(x)=F(-x) với mọi giá trị của x .
cho đa thức f(x)=ax^2+bx+c. Chứng minh rằng nếu a+b+c=0 thì x=1 là một nghiệm của đa thức f(x)
Với x-1 ta có:
\(f\left(x\right)=a+b+c=0\)
Vậy x 1 nghiệm của đa thức f(x)
1. Cho 2 đa thức :f(x)= 3x2 + 4x3 -7x-6
g(x)= 15+ 2x4-3x3+3x
a) Sắp xếp các đa thức trên theo lũy thừa giảm dần của biến
b) Tính f(x)+g(x), f(x)-g(x)?
c) Chứng tỏ x = -1 là nghiệm của f(x), nhưng ko phải là nghiệm của g(x).
Giúp mik cái nha
a) tìm giá trị lớn nhất của biểu thức: A=1/x^2-4x+7
b) chứng tỏ đa thức f(x)=x^2-4x+7vô nghiệm
Giúp mình nha. Đag cần gấp
\(a)\) Ta có :
\(A=\frac{1}{x^2-4x+7}\)
\(A=\frac{1}{\left(x^2-4x+4\right)+3}\)
\(A=\frac{1}{\left(x-2\right)^2+3}\)
Lại có :
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\)\(\left(x-2\right)^2+3\ge3\)
\(\Rightarrow\)\(A=\frac{1}{\left(x-2\right)^2+3}\le\frac{1}{3}\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2+3=3\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=3-3\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTLN của \(A\) là \(\frac{1}{3}\) khi 2\(x=2\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(f\left(x\right)=x^2-4x+7\)
\(f\left(x\right)=\left(x^2-4x+4\right)+3\)
\(f\left(x\right)=\left(x-2\right)^2+3\ge3>0\)
Vậy đa thức \(f\left(x\right)\) vô nghiệm
Chúc bạn học tốt ~
bài 1: tìm các hệ số a và b của đa thức f(x)=a+b biết rằng f(1)=1,f(2)=4
bài 2:cho đa thức f(x)=ax^2+bx+c bằng 0 với mọi giá trị của x. chứng minh rằng a=b=c=0
bài 3: cho đa thức P(x)=ax^2+bx+c trong đó các hệ số a,b,c là các số nguyên. biết rằng giá trị của đa thức chia hết cho 3 với mọi giá trị nguyên của x. chứng minh rằng a,b,c đều chia hết cho 3
Bài 1:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
Cho đa thức \(f\left(x\right)=2x^2+10x+15\)
Chứng tỏ đa thức trên không có nghiệm
\(2x^2+10x+15=0\)
\(\Leftrightarrow2.\left(x^2+5x+\frac{15}{2}\right)=0\Leftrightarrow x^2+5x+\frac{15}{2}=0\)
\(\Leftrightarrow x^2+5x+\frac{25}{4}+\frac{6}{4}=0\)
\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=-\frac{6}{4}\)
Vậy...
\(f\left(x\right)=x^2+x^2+4x+6x+4+9+2\)
\(=\left(x^2+4x+4\right)+\left(x^2+6x+9\right)+2\)
\(=\left(x+2\right)^2+\left(x+3\right)^2+2>0\)
Vậy đa thức trên ko có ngiệm
tự đang tự tl :v bạn có vẻ thích làm súc vật :))