cho parabol (P):y=-\(\dfrac{1}{4}\)x2 và điểm I(0;-2)
gọi (d) là đường thẳng đi qua I và có hệ số góc m
2/ chứng tỏ (P) luôn cắt (d) tại hai điểm phân biệt là A vàB
3/ tìm m để đoạn thẳng AB ngắn nhất
Cho parabol -3x2 cắt đường thẳng y=x-2 tại hai điểm P(x1;y1),Q(x2;y2).Giá trị của biểu thức x1x2+\(\dfrac{1}{2}\)y1y2 là
A.\(\dfrac{4}{3}\) B.\(\dfrac{8}{3}\) C.0 D.\(\dfrac{-4}{3}\)
Cho parabol (P) :y= \(\dfrac{1}{2}\)x2 và đường thẳng (d): y= -x+m (x là ẩn,m là tham số)
a. tìm toạ độ giao điểm của parabol (P) với đường thẳng (d) khi m=4
a: Khi m=4 thì (d): y=-x+4
PTHĐGĐ là:
1/2x^2=-x+4
=>x^2=-2x+8
=>x^2+2x-8=0
=>(x+4)(x-2)=0
=>x=2 hoặc x=-4
Khi x=2 thì y=1/2*2^2=2
Khi x=-4 thì y=1/2(-4)^2=8
Tìm phương trình đường thẳng (d) đi qua điểm I (0; 1) và cắt parabol (P): y = x 2 tại hai điểm phân biệt M và N sao cho MN = 2 10
A. y = 2x + 1; y = −2x – 1
B. y = 2x + 1; y = −2x + 1
C. y = 2x + 1; y = 2x – 1
D. y = −2x + 2; y = −2x + 1
Điểm nào sau đây là giao điểm của đường thẳng (d):y=2x+3 và parabol (P):y=\(\dfrac{-1}{4}\)x2?
A.M(-2;-1) B.M(-2;-6) C.M(-6;9) D.(6;-9)
Lời giải:
Phương trình hoành độ giao điểm:
$\frac{-1}{4}x^2=2x+3$
$\Leftrightarrow \frac{1}{4}x^2+2x+3=0$
$\Leftrightarrow x=-2$ hoặc $x=-6$
$x=-2$ thì $y=2x+3=2(-2)+3=-1$. Giao điểm 1 là $(-2;-1)$
$x=-6$ thì $y=2x+3=2(-6)+3=-9$. Giao điểm 2 là $(-6; -9)$
Đáp án A.
Xác định parabol (P): y = a x 2 + bx + c, a ≠ 0 đỉnh I biết (P) đi qua M (4; 3) cắt Ox tại N (3; 0) và P sao cho △ INP có diện tích bằng 1, biết hoành độ điểm P nhỏ hơn 3.
A. y = x 2 − 4x + 3
B. y = x 2 + 4x -21
C. y = - x 2 + 4x - 3
D. y = x 2 − 4x + 3
Cho Parabol (P):y=x2,(d):y=\(\left(m-2\right)x+m-5\).
a)Tìm m để (P) và (d) tiếp xúc nhau.
b)Tìm m để (d) và (P) tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn \(\dfrac{x_1-1}{x_2}+\dfrac{x_2-1}{x_1}=\dfrac{18}{5}\)
Cho parabol (P): y = x2 và đường thẳng (d): y = mx - 1 (m ≠ 0). Tìm m để đường thẳng (d) cắt (P) tại 2 điểm phân biệt thỏa mãn x2.(x12 + 1) = 3
Xét ptr hoành độ của `(P)` và `(d)` có:
`x^2=mx-1`
`<=>x^2-mx+1=0` `(1)`
Để `(d)` cắt `(P)` tại `2` điểm pb thì ptr `(1)` có `2` `n_o` pb
`=>\Delta > 0`
`<=>(-m)^2-4 > 0`
`<=>m^2 > 4`
`<=>` $\left[\begin{matrix} m > 4\\ m < -4\end{matrix}\right.$
Với `m > 4` hoặc `m < -4`, áp dụng Vi-ét có:`{(x_1+x_2=[-b]/a=-m),(x_1.x_2=c/a=1):}`
Ta có:`x_2(x_1 ^2+1)=3`
`<=>x_2(x_1 ^2+x_1.x_2)=3`
`<=>x_1.x_2(x_1+x_2)=3`
`<=>1(-m)=3`
`<=>m=-3` (ko t/m)
Vậy không có gtr nào của `m` t/m yêu cầu đề bài
Trong mặt phẳng tọa độ Oxy, cho Parabol(P): y=x2 và đường thẳng (d): y=2(m+1)x-m2-4 (1), (m là tham số)
a) Tìm m để đường thẳng (d) đi qua A(0;-5)
b) Với giá trị nào của m để đường thẳng (d) cắt parabol (P) tại 2 điểm phân biệt có hoành độ x1; x2 thỏa mãn điều kiện: (2x1-1)(x22-2mx2+m2+3)=21
a: Thay x=0 và y=-5 vào (d), ta được:
2(m+1)*0-m^2-4=-5
=>m^2+4=5
=>m=1 hoặc m=-1
b:
PTHĐGĐ là;
x^2-2(m+1)x+m^2+4=0
Δ=(2m+2)^2-4(m^2+4)
=4m^2+8m+4-4m^2-16=8m-12
Để PT có hai nghiệm phân biệt thì 8m-12>0
=>m>3/2
x1+x2=2m+2; x1x2=m^2+4
(2x1-1)(x2^2-2m*x2+m^2+3)=21
=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21
=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21
=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21
=>(2x1-1)(2x2-1)=21
=>4x1x2-2(x1+x2)+1=21
=>4(m^2+4)-2(2m+2)+1=21
=>4m^2+16-4m-4-20=0
=>4m^2-4m-8=0
=>(m-2)(m+1)=0
=>m=2(nhận) hoặc m=-1(loại)
Trong mặt phẳng với hệ tọa độ Oxy, cho parabol ( P ) : y = x 2 − 4 và parabol (P') là ảnh của (P) qua phép tịnh tiến theo v → = 0 ; b , với 0<b<4. Gọi A,B là giao điểm của (P) với Ox, M,N là giao điểm của (P') với Ox , I, J lần lượt là đỉnh của (P) và (P'). Tìm tọa độ điểm J để diện tích tam giác IAB bằng 8 lần diện tích tam giác JMN.
A. J 0 ; − 1 5 .
B. J 0 ; 1 .
C. J 0 ; − 4 5 .
D. J 0 ; − 1 .
Đáp án D
Phép tịnh tiến theo v → 0 ; b biến parabol P : y = x 2 − 4 thành parabol P ' : y = x 2 − 4 + b
Giao điểm của A,B với Ox của (P) có tọa độ lần lượt là: − 2 ; 0 , 2 ; 0
Giao điểm M,N với Ox của (P) có toạn độ lần lượt là: − 4 − b ; 0 , 4 − b ; 0
Đỉnh I,J của parabon (P), (P') có tọa độ lần lượt: 0 ; − 4 , 0 ; − 4 + b
Diện tích tam giác IAB bằng 8 lần diện tích tam giác JMN nên ta có:
I O . A B = 8 J O . M N ⇔ 4.4 = 8. 4 − b .2 4 − b ⇔ 4 − b 3 = 1 ⇔ b = 3 ⇒ J 0 ; − 1
Cho parabol (P): y = \(\dfrac{1}{2}\)x2 và đường thẳng (d): y = 3x - 4
Viết phương trình đường thẳng (d1): y = ax + b song song với (d) và cắt (P) tại điểm A có hoành độ bằng -2
Vì (d1)//(d) nên \(\left\{{}\begin{matrix}a=3\\b\ne-4\end{matrix}\right.\)
Vậy: (d1): y=3x+b
Thay x=-2 vào (P), ta được:
\(y=\dfrac{1}{2}\cdot\left(-2\right)^2=\dfrac{1}{2}\cdot4=2\)
Thay x=-2 và y=2 vào (d1), ta được:
\(3\cdot\left(-2\right)+b=2\)
\(\Leftrightarrow b=8\)(thỏa ĐK)
Vậy: (d1): y=3x+8
để \(\left(d1\right)\) sogn song với \(\left(d\right)\)
\(< =>\left\{{}\begin{matrix}a=3\\b\ne-4\end{matrix}\right.\)
để (d1) cắt (P) tại A có hoành độ -2\(=>x=-2\)
\(=>\dfrac{1}{2}x^2=3x+b< =>\dfrac{1}{2}\left(-2\right)^2=3\left(-2\right)+b=>b=8\left(tm\right)\)
=>\(\left(d1\right):y=3x+8\)