Tính:
a)\(\dfrac{1}{2}\)x2y.(2x3-\(\dfrac{2}{5}\)xy2-1)
b)(x2-2x+3).(\(\dfrac{1}{2}\)x-5)
Thực hiện phép tính:
a)(4x4y-7x2y+3y).(2y-3x2y)
b)(x2+3x-\(\dfrac{3}{2}\)x3):(2x)-\(\dfrac{x}{2}\).(1-\(\dfrac{3}{2}\)x)
c)(-2x3-x-3+5x2):(3-2x)
a: \(\dfrac{4x^4y-7x^2y+3y}{-3x^2+2y}\)
\(=\dfrac{4x^4y-4x^2y-3x^2y+3y}{-\left(3x^2-2y\right)}\)
\(=\dfrac{4x^2y\left(x^2-1\right)-3y\left(x^2-1\right)}{-\left(3x^2-2y\right)}\)
\(=\dfrac{y\left(x^2-1\right)\left(4x^2-3\right)}{-\left(3x^2-2y\right)}\)
a) `(4x^4y-7x^2y+3y).(2y-3x^2y)`
`=8x^4y^2-14x^2y^2+6y^2-12x^6y^2+21x^4y^2-9x^2y^2`
`=29x^4y^2-12x^6y^2-23x^2y^2+6y^2`
b) `(x^2+3x-3/2 x^3):2x - x/2 . (1-3/2 x)`
`=(x+3-3/2 x^2):2 - (x/2 - 3/4 x^2)`
`=x/2 + 3/2 - 3/4 x^2 -x/2 +3/4 x^2`
`=3/2`
c) `(-2x^3-x-3+5x^2):(3-2x)`
`=(3-2x)(x^2-x-1) : (3-2x)`
`=x^2-x-1`
BÀI 1: NHÂN ĐƠN THỨC VỚI ĐA THỨC
6) 5x +3 ( x2 -x - 1)
7) -\(\dfrac{2}{3}\)x ( -x4y2 -2x2 - 10y2)
8) \(\dfrac{2}{3}\)xy ( 3 x2y -3xy + y2)
9) (-2x).(3x2 - 2x +4)
10) 3x4 ( -2x3 + 5x2 - \(\dfrac{2}{3}\)x + \(\dfrac{1}{3}\))
9: \(\left(-2x\right)\left(3x^2-2x+4\right)=-6x^3+4x^2-8x\)
Thu gọn đa thức và tìm bậc
A= x2y + \(\dfrac{\text{1}}{\text{3}}\)xy2 + \(\dfrac{\text{3}}{\text{5}}\)xy2 - 2xy + 3x2y - \(\dfrac{\text{2}}{\text{3}}\)
B= \(\dfrac{\text{9}}{\text{5}}\)xy2z + 2x3y2z + \(\dfrac{\text{1}}{\text{5}}\)xy2z - 2x3y2z - 1
\(A=4x^2y+\dfrac{14}{15}xy^2-2xy-\dfrac{2}{3}\) bậc : 3
\(B=2xy^2z-1\) bậc :4
+ Thu gọn :
\(A=4x^2y+\dfrac{14}{15}xy^2-2xy-\dfrac{2}{3}\)
\(B=2xy^2z-1\)
+ Bậc
Đa thức \(A\) có 4 hạng tử :
\(4x^2y\) có bậc \(3\)
\(\dfrac{14}{15}xy^2\) có bậc \(3\)
\(-2xy\) có bậc \(2\)
\(-\dfrac{2}{3}\) có bậc \(0\)
Đa thức \(B\) có \(2\) hạng tử :
\(2xy^2z\) có bậc \(4\)
\(-1\) có bậc \(0\)
Viết các biểu thức sau dưới dạng lập phương của tổng (hiệu).
a) x3-6x2+12x-8 b) 8-12x+6x2-x3
c)x3+x2+\(\dfrac{1}{3}\)x+\(\dfrac{1}{27}\) d) \(\dfrac{x^3}{8}\)+\(\dfrac{3}{4}\)x2y+\(\dfrac{3}{2}\)xy2+y3 e) (x-1)3-15.(x-1)2+75.(x-1)-125
a)
=(x-2)3
b)\(\left(2-x\right)^3\)
c)\(\left(x+\dfrac{1}{3}\right)^3\)
d)\(\left(\dfrac{x}{2}+y\right)^3\)
e)
\(=\left(x-1\right)^2\left(x-1-15\right)+25\left[3\left(x-1\right)-5\right]\)
\(=\left(x-1\right)^2\left(x-16\right)+25\left(3x-3-5\right)\)
\(=\left(x-1\right)^2\left(x-16\right)+25\left(3x-8\right)\)
Tính giá trị của biểu thức:
A=2x+xy2-x2y-2y với x=-\(\dfrac{1}{2}\) và y=-\(\dfrac{1}{3}\)
\(A=2x+xy^2-x^2y-2y\)
\(=2\left(x-y\right)-xy\left(x-y\right)\)
\(=\left(x-y\right)\left(2-xy\right)\)
\(=\left(-\dfrac{1}{2}-\dfrac{-1}{3}\right)\left(2-\dfrac{-1}{2}\cdot\dfrac{-1}{3}\right)\)
\(=\left(\dfrac{1}{3}-\dfrac{1}{2}\right)\cdot\left(2-\dfrac{1}{6}\right)\)
\(=\dfrac{-1}{6}\cdot\dfrac{11}{6}=-\dfrac{11}{36}\)
Thực hiện phép tính:
a) (x2y - xy + xy2 + y3). 3xy2; b)(2x3-9x2+19x-15):(x2-3x+5)
c)(x3 - 3x2 + x - 3):( x - 3)
\(a,=3x^3y^3-3x^2y^3+3x^2y^4+3xy^5\\ b,=\left(2x^3-6x^2+10x-3x^2+9x-15\right):\left(x^2-3x+5\right)\\ =\left[2x\left(x^2-3x+5\right)-3\left(x^2-3x+5\right)\right]:\left(x^2-3x+5\right)\\ =2x-3\\ c,=\left[x^2\left(x-3\right)+\left(x-3\right)\right]:\left(x-3\right)=x^2+1\)
1. Làm tính nhân:
a. 3x(5x2 - 2x - 1)
b. (x2+2xy -3)(-xy)
c. 1/2 x2y ( 2x3 - 2/5 xy2 -1)
Làm tính nhân:
a. 3 x(5x2 - 2x -1) = 15x3 - 6x2 - 3x
b. (x2+2xy -3)(-xy) = - x3y – 2x2y2 + 3xy
c. 1/2 x2y ( 2x3 - 2/5 xy2 -1 )= x5y - 1/5 x3y3 - 1/2 x2y
Thực hiện phép tính:
a, (2x-5)(5-x)
b, \(\dfrac{1}{3x-2}\)-\(\dfrac{1}{3x+2}\)
c, \(\dfrac{3}{x-3}\)-\(\dfrac{6x}{x^2-9}\)+\(\dfrac{x}{x+3}\)
\(a,\left(2x-5\right)\left(5-x\right)=5\left(2x-5\right)-x\left(2x-5\right)=10x-25-2x^2+5x=15x-2x^2-25\\ b,\dfrac{1}{3x-2}-\dfrac{1}{3x+2}=\dfrac{3x+2-3x+2}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{4}{\left(3x-2\right)\left(3x+2\right)}\)
\(c,\dfrac{3}{x-3}-\dfrac{6x}{x^2-9}+\dfrac{x}{x+3}=\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x+9-6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2-6x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x-3}{x+3}\)