Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vân Nguyễn Thị
Xem chi tiết
Trên con đường thành côn...
20 tháng 11 2021 lúc 15:41

Xét \(x+y+z=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)

\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)

Xét \(x+y+z\ne0\) thì ta có:

\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)

\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)

Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)

Trên con đường thành côn...
20 tháng 11 2021 lúc 15:46

Nếu bị lỗi thì bạn có thể xem đây nhé:

undefined

THI QUYNH HOA BUI
Xem chi tiết
trung lê
Xem chi tiết
can thi thu hien
Xem chi tiết
Phạm Thị Hằng
4 tháng 3 2016 lúc 10:40

Áp dụng tích chất dãy tỉ số bằng nhau ta có: 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

=> x=y=z 

Ta có: 1 + x/y = (x+y)/y = (y+y)/y = 2y/y = 2

          1+ y/z = (y+z)/z = (z+z)/z = 2z/z = 2

    1 + z/x = (z+x)/z = (x+x)/x = 2x/x = 2

Vậy B= 2.2.2 = 8

Nguyễn Thị Mỹ Hằng
Xem chi tiết
Minhchau Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 20:33

Ta có: \(\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)

nên \(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)

mà 2x+y-z=0

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}=\dfrac{2x+y-z-2+1+3}{4+3-5}=\dfrac{2}{2}=1\)

Do đó: x=3; y=2; z=8

Phạm Tường Lan Vy
Xem chi tiết
Nguyễn Thành Đạt
Xem chi tiết
Dũng Nguyễn
Xem chi tiết
Hoàng Nguyễn Văn
1 tháng 2 2021 lúc 0:10

Áp dụng bất đẳng thức Bunhia dạng phân thức cho 3 số ta có:

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\begin{matrix}\dfrac{x}{y+z}=\dfrac{y}{z+x}=\dfrac{z}{x+y}\\x,y,z>0;x+y+z=2\end{matrix}\)

\(\Leftrightarrow x=y=z=\dfrac{2}{3}\)

Áp dụng BĐT Svac-xơ cho 3 số dương có :

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2.\left(x+y+z\right)}=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{2}{3}\)

Vậy Min biểu thức cho là 1 khi \(x=y=z=\dfrac{2}{3}\)

Hùng Vương RPK sVip
Xem chi tiết
Nguyen Van Thanh
27 tháng 1 2016 lúc 15:21

Cộng vế 2 đẳng thức đầu lại ta được 

(y+z-x+z+x-y+z+y-z)/(x+y+z)=2 nên (x+z-y)/y=2 hay x+z=3y, tương tự y+z=3x, x+y=3z nên GT=27