Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đạt Phạm
Xem chi tiết
Nguyễn Thị Ngọc Mai
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
Mỹ Hằng
18 tháng 3 2023 lúc 13:02

   

Mỹ Hằng
18 tháng 3 2023 lúc 13:13

File: undefined 

Mỹ Hằng
18 tháng 3 2023 lúc 13:14

loading...  

buihuuthang
Xem chi tiết
Hà Minh Quý
20 tháng 5 2022 lúc 4:06

loading...  loading...  đánh giá tốt giúp mk vs ạ

Hướng Lạc Đồng
Xem chi tiết
is Life Carry
17 tháng 4 2017 lúc 23:33

làm sao để xem câu trả lời

Hạ Ann
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 20:02

Bài 2: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:

\(AM\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:

\(AN\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b) Xét tứ giác AMHN có 

\(\widehat{NAM}=90^0\)

\(\widehat{ANH}=90^0\)

\(\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=MN

Ta có: \(AM\cdot AB+AN\cdot AC\)

\(=AH^2+AH^2\)

\(=2AH^2=2\cdot MN^2\)

Vũ Ngọc Thảo Nguyên
15 tháng 7 2023 lúc 12:21

câu c,d bài 2

lomg vu
Xem chi tiết
Nguyễn Xuân Thùy Ngân
1 tháng 4 2020 lúc 21:07

12⋅AB⋅AC=12⋅AH⋅BC" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">12⋅AB⋅AC=12⋅AH⋅BC

AB⋅ACBC=8⋅1517=12017(cm)" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">AB⋅ACBC=8⋅1517=12017(cm)

12017(cm)" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">12017(cm)

AMAB=ANAC" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">AMAB=ANAC

Suy ra : AMAC=ANAB(đpcm)

Khách vãng lai đã xóa
Vi Sóng Lò
Xem chi tiết
Anh Nguyễn
12 tháng 9 2021 lúc 16:03

có thể theo hệ thức lượng(gợi ý)

ta có Sabc=1/2ab.ac (trong tg vuông dg cao là cạnh góc vuông)

         Sabc=1/2ah.bc

=>ah.bc=ab.ac (có thể xét tg đồng dạng rồi lập tỉ số)

 

Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 23:15

b: Xét ΔABH vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Do đó: ΔAMN\(\sim\)ΔACB

trần thiên ân
Xem chi tiết
Nguyễn Ngọc Anh Minh
4 tháng 7 2023 lúc 16:32

A B C H M N

a/

Xét tg vuông ABH

\(AH^2=AM.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông ACH có

\(AH^2=AN.AC\) (lý do như trên)

\(\Rightarrow AM.AB=AN.AC\)

b/

\(AN\perp AB;MH\perp AB\) => AN//MH

\(AM\perp AC;NH\perp AC\) => AM//NH

=> AMHN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)

Mặt khác \(\widehat{A}=90^o\)

=> AMHN là HCN => AM=NH; AN=MH (cạnh đối HCN)

Xét tg vuông ABH và tg vuông ACH có

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) )

=> tg ABH đồng dạng với tg ACH

\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{S_{ABH}}{S_{ACH}}\) (hai tg đồng dạng, tỷ số 2 diện tích bằng bình phương tỷ số đồng dạng)

\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{\dfrac{1}{2}.AB.MH}{\dfrac{1}{2}.AC.NH}\Rightarrow\dfrac{AB}{AC}=\dfrac{MH}{NH}\) lập phương 2 vế

\(\dfrac{AB^3}{AC^3}=\dfrac{MH^2.MH}{NH^2.NH}\) (1)

Xét tg vuông ABH

\(MH^2=BM.AM\) (trong tg vuông bình phương đường cao hạ tử đỉnh góc vuông bằng tích giữa hai hình chiếu của 2 cạnh góc vuông trên cạnh huyền) (2)

Xét tg vuông ACH, c/m tương tự

\(NH^2=CN.AN\) (3)

Thay (2) và (3) vào (1)

(1) \(\Leftrightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM.AM.MH}{CN.AN.NH}\)

Mà AM = NH; AN = MH (cmt)

\(\Rightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM}{CN}\)