Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ha Pham
Xem chi tiết
Du Xin Lỗi
23 tháng 12 2022 lúc 18:12

2.

\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)

ĐKXĐ là :

\(a\ne0;-3;-2\)

Vs a = 1 ta có:

=> P=3

1.

\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)

Huyền My Thái
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 5 2022 lúc 10:08

\(=\left(\dfrac{2}{2a-b}-\dfrac{6b}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{4}{2a+b}\right):\dfrac{4a^2-b^2+4a^2+b^2}{4a^2-b^2}\)

\(=\dfrac{4a+2b-6b-8a+4b}{\left(2a-b\right)\left(2a+b\right)}\cdot\dfrac{\left(2a-b\right)\left(2a+b\right)}{8a^2}\)

\(=\dfrac{-4a}{8a^2}=\dfrac{-1}{2a}\)

Huyền My Thái
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 5 2022 lúc 22:41

\(=\left(\dfrac{2\left(2a+b\right)-6b-4\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\right):\dfrac{4a^2-b^2+4a^2+b^2}{\left(2a-b\right)\left(2a+b\right)}\)

\(=\dfrac{4a+2b-6b-8a+4b}{8a^2}\)

\(=\dfrac{-4a}{8a^2}=\dfrac{-1}{2a}\)

Nguyễn Trọng Đức
Xem chi tiết
Huyền My Thái
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 5 2022 lúc 12:54

\(A=\dfrac{4a+2b-6b-8a+4b}{\left(2a-b\right)\left(2a+b\right)}:\dfrac{4a^2-b^2+4a^2+b^2}{\left(2a-b\right)\left(2a+b\right)}\)

\(=\dfrac{-4a}{\left(2a-b\right)\left(2a+b\right)}\cdot\dfrac{\left(2a-b\right)\left(2a+b\right)}{8a^2}=\dfrac{-1}{2a}\)

GV
Xem chi tiết
Nguyễn thành Đạt
28 tháng 1 2023 lúc 19:51

\(Từ\) \(giả\) \(thiết\) : \(4a^2+b^2=\text{5}ab\)

\(\Leftrightarrow4a^2-4ab-ab+b^2\)

\(\Leftrightarrow\left(4a-b\right)\left(a-b\right)=0\)

\(TH1:\) \(4a-b=0\) \((\) \(mẫu\) \(thuẫn\) \(với\) \(2a>b\) \()\)

\(TH2:\) \(a-b=0\)

\(\Rightarrow a=b\)

\(\Rightarrow A=\dfrac{a^2}{4a^2-a^2}\)

\(\Rightarrow A=\dfrac{1}{3}\)

Nguyễn Thảo Hân
Xem chi tiết
Nguyễn Quốc Khánh
16 tháng 12 2017 lúc 21:13

4a^2+b^2=5ab

=>4a^2 -5ab +b^2=0

=>4a^2-4ab+b^2-ab=0

=>4a(a-b)+b(b-a)=0

=>(4a-b)(a-b)=0\(\begin{matrix}\\\end{matrix}\)

=>\(\left[{}\begin{matrix}4a-b=0\\a-b=0\end{matrix}\right.\)=>\(\begin{matrix}4a=b\\a=b\end{matrix}\)

thay vào bt ta tính được 2 trường hợp là \(\dfrac{1}{3}\)\(\dfrac{-1}{3}\)

Huyền My Thái
Xem chi tiết
Mysterious Person
15 tháng 7 2017 lúc 10:21

cái này chỉ rút rọn được thôi

Big City Boy
Xem chi tiết
Trần Minh Hoàng
11 tháng 3 2021 lúc 21:32

Áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(4a^2+9b^2\right)\left(2^2+2^2\right)\ge\left(2a.1-3b.2\right)^2=\left(4a-6b\right)^2=1\)

\(\Rightarrow4a^2+9b^2\ge\dfrac{1}{8}\).

Đẳng thức xảy ra khi \(a=\dfrac{1}{8};b=\dfrac{-1}{12}\).