cho 4a^2+b^2=5ab.Tinh M=\(\dfrac{4a^2+b^2}{4a^2-b^2}\)
\(\)Bài 1: Rút gọn:
M= (\(\dfrac{2a}{2a+b}\)-\(\dfrac{4a^2}{4a^2+4ab+b^2}\)):(\(\dfrac{2a}{4a^2-b^2}+\dfrac{1}{b-2a}\))
Bài 2: Cho biểu thức:
P=(\(\dfrac{a+6}{3a+9}-\dfrac{1}{a+3}\)):\(\dfrac{a+2}{27a}\)
a) Tìm ĐKXĐ và rút gọn
b) Tính giá trị của P tại a=1
2.
\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)
ĐKXĐ là :
\(a\ne0;-3;-2\)
Vs a = 1 ta có:
=> P=3
1.
\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)
(\(\dfrac{2}{2a-b}\)+\(\dfrac{6b}{b^{2^{ }}-4a^2}\)-\(\dfrac{4}{2a+b}\)):(1+\(\dfrac{4a^2+b^{2^{ }}}{4a^{2^{ }}-b^2}\))
\(=\left(\dfrac{2}{2a-b}-\dfrac{6b}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{4}{2a+b}\right):\dfrac{4a^2-b^2+4a^2+b^2}{4a^2-b^2}\)
\(=\dfrac{4a+2b-6b-8a+4b}{\left(2a-b\right)\left(2a+b\right)}\cdot\dfrac{\left(2a-b\right)\left(2a+b\right)}{8a^2}\)
\(=\dfrac{-4a}{8a^2}=\dfrac{-1}{2a}\)
(\(\dfrac{2}{2a-b}\)+\(\dfrac{6b}{b^{2^{ }}-4a^2}\)-\(\dfrac{4}{2a+b}\)):(1+\(\dfrac{4a^{2^{ }}+b^{2^{ }}}{4a^{2^{ }}-b^2}\))
Rút gọn
\(=\left(\dfrac{2\left(2a+b\right)-6b-4\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\right):\dfrac{4a^2-b^2+4a^2+b^2}{\left(2a-b\right)\left(2a+b\right)}\)
\(=\dfrac{4a+2b-6b-8a+4b}{8a^2}\)
\(=\dfrac{-4a}{8a^2}=\dfrac{-1}{2a}\)
Cho 4a2-4ab+b2=ab
và 2a>b>0.
Tìm M=\(\dfrac{ab}{4a^2-b^2}\)
Chứng minh biểu thức không phụ thuộc vào biến:
A= (\(\dfrac{2}{2a-b}\)+\(\dfrac{6b}{b^{2^{ }}-4a^{2^{ }}}\)-\(\dfrac{4}{2a+b}\)):(1+\(\dfrac{4a^{2^{ }}+b^{2^{ }}}{4a^{2^{ }}-b^2}\))
Giúp mình với,mình đang cần gấp!!
\(A=\dfrac{4a+2b-6b-8a+4b}{\left(2a-b\right)\left(2a+b\right)}:\dfrac{4a^2-b^2+4a^2+b^2}{\left(2a-b\right)\left(2a+b\right)}\)
\(=\dfrac{-4a}{\left(2a-b\right)\left(2a+b\right)}\cdot\dfrac{\left(2a-b\right)\left(2a+b\right)}{8a^2}=\dfrac{-1}{2a}\)
tính giá trị của biểu thức
Cho \(4a^2+b^2=\text{5ab}\) và \(2a>b>0\) , tính giá trị của A \(=\dfrac{ab}{4a^2-b^2}\)
\(Từ\) \(giả\) \(thiết\) : \(4a^2+b^2=\text{5}ab\)
\(\Leftrightarrow4a^2-4ab-ab+b^2\)
\(\Leftrightarrow\left(4a-b\right)\left(a-b\right)=0\)
\(TH1:\) \(4a-b=0\) \((\) \(mẫu\) \(thuẫn\) \(với\) \(2a>b\) \()\)
\(TH2:\) \(a-b=0\)
\(\Rightarrow a=b\)
\(\Rightarrow A=\dfrac{a^2}{4a^2-a^2}\)
\(\Rightarrow A=\dfrac{1}{3}\)
cho 4a2+b2 = 5ab với 2a>b>0. tìm giá trị của phân thức N= \(\dfrac{ab}{4a^2-b^2}\)
4a^2+b^2=5ab
=>4a^2 -5ab +b^2=0
=>4a^2-4ab+b^2-ab=0
=>4a(a-b)+b(b-a)=0
=>(4a-b)(a-b)=0\(\begin{matrix}\\\end{matrix}\)
=>\(\left[{}\begin{matrix}4a-b=0\\a-b=0\end{matrix}\right.\)=>\(\begin{matrix}4a=b\\a=b\end{matrix}\)
thay vào bt ta tính được 2 trường hợp là \(\dfrac{1}{3}\)và\(\dfrac{-1}{3}\)
Chứng minh biểu thức không phụ thuộc vào biến
A= (\(\dfrac{2}{2a-b}\)+\(\dfrac{6b}{b^{2^{ }}-4a^2}\)-\(\dfrac{4}{2a+b}\)):(1+\(\dfrac{4a^{2^{ }}+b^2}{4a^2-b^2}\))
Cho a, b thỏa mãn: 4a-6b=1. Chứng minh: \(4a^2+9b^2\ge\dfrac{1}{8}\)
Áp dụng bất đẳng thức Cauchy - Schwarz ta có:
\(\left(4a^2+9b^2\right)\left(2^2+2^2\right)\ge\left(2a.1-3b.2\right)^2=\left(4a-6b\right)^2=1\)
\(\Rightarrow4a^2+9b^2\ge\dfrac{1}{8}\).
Đẳng thức xảy ra khi \(a=\dfrac{1}{8};b=\dfrac{-1}{12}\).