Cho tam giác nhọn ABC, các đường cao BD, CE cắt nhau tại H. C/m: BC2 = BH . BD + CH . CE
Cho tam giác ABC nhọn, đường cao BD và CE cắt nhau tại H. Chứng minh: P, H. BD + CH. CE = BC2.
Cho tam giác ABC nhọn, các đường cao BD và CE cắt nhau tại H. Chứng minh
B C 2 = B H . B D + C H . C E .
Gợi ý: Gọi , chứng minh được AK ^ BC.
Áp dụng cách làm tương tự 4A suy ra ĐPCM
Cho tam giác ABC có AB=16cm; AC=20cm;BC=24cm. Kẻ đường phân giác AI( I ∈ BC ). Hai đường cao BD và CE của tam giác cắt nhau tại H ( H ∈ AC; E ∈ AB)
a) CM Δ ADB ∼ ΔAEC
b) tính IB, IC
c) CM BH*BD+CH*CE=BC2
Cho tam giác nhọn ABC , các đường cao BD , CE cắt nhau tại H . Chứng minh rằng BH . BD + CH . CE = \(BC^2\)
Kẻ \(HM\perp BC\)
Xét \(\Delta BHM\) và \(\Delta BCD\) ta có:
\(\widehat{BMH}=\widehat{BDC}=90^o\)
\(\widehat{CBD}\) chung
\(\Rightarrow\Delta BHM\sim\Delta BCD\left(g.g\right)\)
\(\Rightarrow\dfrac{BM}{BD}=\dfrac{BH}{BC}\Rightarrow BM\times BC=BH\times BD\left(1\right)\)
Xét \(\Delta CMH\) và \(\Delta CEB\) ta có:
\(\widehat{BCE}\) chung
\(\widehat{CMH}=\widehat{CEB}=90^o\)
\(\Rightarrow\Delta CMH\sim\Delta CEB\left(g.g\right)\)
\(\Rightarrow\dfrac{CH}{CB}=\dfrac{CM}{CE}\Rightarrow CM\times CB=CH\times CE\left(2\right)\)
Cộng 2 vế của (1)(2) lại với nhau ta đc:
\(BM.BC+CM.CB=BH.BD+CH.CE\)
\(\Leftrightarrow BC\left(BM+CM\right)=BH.BD+CH.CE\)
\(\Rightarrow BC^2=BH.BD+CH.CE\left(đcpcm\right)\)
Vậy..............
Cho tam giác abc có ba góc nhọn hai đường cao BD và CE của tam giác cắt nhau tại H. Chứng minh rằng:
1. góc AED= góc ACB
2.BH*BD+CH*CE=BC^2
a) Chứng minh tam giác AED đông dang tam giác ACB
b) Kẻ HI vuông góc BC
Có BHxBD+CHxCE=BC^2 bằng xét 2 cặp tam giác đông dạng.
1.Cho tam giác ABC nhọn. Kẻ các đường cao BD, CE cắt nhau tại H. Chứng mình rằng: a,AEHD là tứ giác nội tiếp b,BEDC là tứ giác nội tiếp. Tìm tâm đường tròn ngoại tiếp c, Góc EBD=ECD d,AH vuông góc với BC
2.Cho tam giác ABC có 3 góc nhọn. Các đường cao BM và CN cát nhau tại I. Chứng minh rằng: a,AMIN là một tứ giác nội tiếp b, Góc NAI=NMI c,AI cắt BC tại H. Chứng minh HA là tia phân giác của góc NHM
1:
a: góc AEH+góc ADH=180 độ
=>AEHD nội tiếp
b: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
c: BEDC nội tiếp
=>góc EBD=góc ECD
d: Xét ΔABC có
BD,CE là đường cao
BD cắt CE tại H
=>H là trực tâm
=>AH vuông góc BC
Cho tam giác nhọn ABC có hai đường cao BD và CE căt nhau tại H .
Chứng minh rằng : BH . BD + CH .CE = BC ^ 2
Cho tam giác nhọn ABC có hai đường cao BD và CE căt nhau tại H .
Chứng minh rằng : BC^2=BH.BD+CH.CE
Bài này em có thể giải như sau
1)1) Ta có:
△CDH∼△ACE (g.g)△CDH∼△ACE (g.g)
⇒CHAE=CDAC⇒CH.AC=AE.CD=AB.AE⇒CHAE=CDAC⇒CH.AC=AE.CD=AB.AE
△ADH∼△ACF (g.g)△ADH∼△ACF (g.g)
⇒ADAC=AHAF⇒AH.AC=AD.AF⇒ADAC=AHAF⇒AH.AC=AD.AF
Do đó: AC2=AH.AC+CH.AC=AB.AE+AD.AFAC2=AH.AC+CH.AC=AB.AE+AD.AF
2)2) Dựng HFHF vuông góc BC.BC. Ta có:
△BFH∼△BDC△BFH∼△BDC
⇒BFBD=BHBC⇒BF.BC=BD.BH⇒BFBD=BHBC⇒BF.BC=BD.BH
△CFH∼△CEB△CFH∼△CEB
⇒CF/CE=CHCB⇒CF.BC=CE.CH⇒CFCE=CHCB⇒CF.BC=CE.CH
Do đó: BC^2=BF.BC+CF.BC=BD.BH=CE.CH
các dấu kí tự bạn tự thêm nhé
cho tam giác nhọn ABC có đường cao BD, CE cắt nhau tại H. I thuộc BH, K thuộc CH sao cho góc AIC = AKB=90. CM: tam giác AIK cân