Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hân Trương
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 4 2018 lúc 10:33

Gợi ý: Gọi , chứng minh được AK ^ BC.

Áp dụng cách làm tương tự 4A suy ra ĐPCM

Huệ Nguyễn
31 tháng 3 2023 lúc 19:16

Trã lời dùm

Đỗ Đàm Phi Long
Xem chi tiết
EDOGAWA CONAN
Xem chi tiết
Toyama Kazuha
26 tháng 7 2018 lúc 10:12

Kẻ \(HM\perp BC\)
Xét \(\Delta BHM\)\(\Delta BCD\) ta có:
\(\widehat{BMH}=\widehat{BDC}=90^o\)
\(\widehat{CBD}\) chung
\(\Rightarrow\Delta BHM\sim\Delta BCD\left(g.g\right)\)
\(\Rightarrow\dfrac{BM}{BD}=\dfrac{BH}{BC}\Rightarrow BM\times BC=BH\times BD\left(1\right)\)
Xét \(\Delta CMH\)\(\Delta CEB\) ta có:
\(\widehat{BCE}\) chung
\(\widehat{CMH}=\widehat{CEB}=90^o\)
\(\Rightarrow\Delta CMH\sim\Delta CEB\left(g.g\right)\)
\(\Rightarrow\dfrac{CH}{CB}=\dfrac{CM}{CE}\Rightarrow CM\times CB=CH\times CE\left(2\right)\)
Cộng 2 vế của (1)(2) lại với nhau ta đc:
\(BM.BC+CM.CB=BH.BD+CH.CE\)
\(\Leftrightarrow BC\left(BM+CM\right)=BH.BD+CH.CE\)
\(\Rightarrow BC^2=BH.BD+CH.CE\left(đcpcm\right)\)
Vậy..............

Toyama Kazuha
26 tháng 7 2018 lúc 10:12

bonus cho cái hình lun nek
Hỏi đáp Toán

Nhân Tâm
Xem chi tiết
Nguyễn Hoàng Tiến
6 tháng 5 2016 lúc 21:40

a) Chứng minh tam giác AED đông dang tam giác ACB

b) Kẻ HI vuông góc BC

Có BHxBD+CHxCE=BC^2 bằng xét 2 cặp tam giác đông dạng.

Bear XD
Xem chi tiết
Bear XD
17 tháng 5 2023 lúc 22:46

mình cần gâps huhu

 

Nguyễn Lê Phước Thịnh
17 tháng 5 2023 lúc 22:48

Mở ảnh

=>AM=AN

Sam SKR丶
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 6 2023 lúc 20:22

1:

a: góc AEH+góc ADH=180 độ

=>AEHD nội tiếp

b: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

c: BEDC nội tiếp

=>góc EBD=góc ECD

d: Xét ΔABC có

BD,CE là đường cao

BD cắt CE tại H

=>H là trực tâm

=>AH vuông góc BC

AMZ
Xem chi tiết
Ben 10
1 tháng 8 2017 lúc 14:46

Cho tam giác nhọn ABC có hai đường cao BD và CE căt nhau tại H .

Chứng minh rằng : BC^2=BH.BD+CH.CE

Bài này em có thể giải như sau

1)1) Ta có:

△CDH∼△ACE (g.g)△CDH∼△ACE (g.g)

⇒CHAE=CDAC⇒CH.AC=AE.CD=AB.AE⇒CHAE=CDAC⇒CH.AC=AE.CD=AB.AE

△ADH∼△ACF (g.g)△ADH∼△ACF (g.g)

⇒ADAC=AHAF⇒AH.AC=AD.AF⇒ADAC=AHAF⇒AH.AC=AD.AF

Do đó: AC2=AH.AC+CH.AC=AB.AE+AD.AFAC2=AH.AC+CH.AC=AB.AE+AD.AF

2)2) Dựng HFHF vuông góc BC.BC. Ta có:

△BFH∼△BDC△BFH∼△BDC

⇒BFBD=BHBC⇒BF.BC=BD.BH⇒BFBD=BHBC⇒BF.BC=BD.BH

△CFH∼△CEB△CFH∼△CEB

⇒CF/CE=CHCB⇒CF.BC=CE.CH⇒CFCE=CHCB⇒CF.BC=CE.CH

Do đó: BC^2=BF.BC+CF.BC=BD.BH=CE.CH

các dấu kí tự bạn tự thêm nhé

My Hà
Xem chi tiết