a. Vẽ AM (HM) cũng vuông với BC
Xét tam giác BHM và BCD có:
góc BEH = góc BCD = 90o
góc CBD chung
Do đó tam giác BHM~BCD ( g.g)
=> \(\dfrac{BM}{BD}=\dfrac{BH}{BC}\Rightarrow BM.BC=BH.BD\) (1)
Xét tam giác CMH và CEB có:
góc BCE chung
góc HMC = góc CEB = 90o
Do đó tam giác CMH~CEB (g.g)
=> \(\dfrac{CH}{CB}=\dfrac{CM}{CE}\Rightarrow CM.CB=CH.CE\) (2)
Từ (1) và (2) cộng vế theo vế ta được:
BM.BC +CM.CB = BH.BD+CH.CE
=> (BM + CM) .BC = BH . BD + CH . CE
=> BC2 = BH . BD + CH . CE (đpcm)
AH cắt BC tại F thì AF _|_ BC
Tg HFC~ Tg BEC
=> HC/BC = FC/EC
=> HC.EC = BC.FC
Tương tự : BH.BD = BF.BC
Suy ra : BH.BD + EC.HC = BC(BF + FC) = BC^2 Hay BC^2 = BH . BD + CH . CE