Giải phương trình: \(\left(x^2-3x+1\right)\left(x^2-3x-2\right)=0\)
Nhanh nhé mik cần ngay và luôn ok
a, \(2x^3+3x^2-32x=48\)
b, \(\dfrac{3}{5x-1}+\dfrac{2}{3-5x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
giải phương trình giúp mik nhanh nhé
cho hàm số \(f\left(x\right)=x^3-3x^2+2\)
a, giải bất phương trình \(f'\left(x\right)\le0\)
b, giải phương trình \(f'=\left(x^2-3x+2\right)=0\)
c, đặt \(g\left(x\right)=f\left(1-2x\right)+x^2-x+2022\) giải bất phương trình\(g'\left(x\right)\ge0\)
\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)
Lời giải:
a. $f'(x)\leq 0$
$\Leftrightarrow 3x^2-6x\leq 0$
$\Leftrightarrow x(x-2)\leq 0$
$\Leftrightarrow 0\leq x\leq 2$
b.
$f'(x)=x^2-3x+2=0$
$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$
$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
c.
$g(x)=f(1-2x)+x^2-x+2022$
$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$
$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$
$g'(x)\geq 0$
$\Leftrightarrow -24x^2+2x+5\geq 0$
$\Leftrightarrow (5-12x)(2x-1)\geq 0$
$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$
Giải các phương trình sau:
1, \(\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\)
2, \(\left(x-2\right)\left(2x-1\right)=x^2-2x\)
3, \(3x^2-4x+1=0\)
4, \(\left|2x-4\right|=0\)
5, \(\left|3x+2\right|=4\)
6, \(\left|2x-5\right|=\left|-x+2\right|\)
*Giúp mình với mình đg cần gấp ạ T_T
\(1.\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}.\Leftrightarrow\dfrac{x-1-3x}{3}=\dfrac{x-2}{2}.\Leftrightarrow\dfrac{-2x-1}{3}-\dfrac{x-2}{2}=0.\)
\(\Leftrightarrow\dfrac{-4x-2-3x+6}{6}=0.\Rightarrow-7x+4=0.\Leftrightarrow x=\dfrac{4}{7}.\)
\(2.\left(x-2\right)\left(2x-1\right)=x^2-2x.\Leftrightarrow\left(x-2\right)\left(2x-1\right)-x\left(x-2\right)=0.\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1-x\right)=0.\Leftrightarrow\left(x-2\right)\left(x-1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=1.\end{matrix}\right.\)
\(3.3x^2-4x+1=0.\Leftrightarrow\left(x-1\right)\left(x-\dfrac{1}{3}\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=\dfrac{1}{3}.\end{matrix}\right.\)
\(4.\left|2x-4\right|=0.\Leftrightarrow2x-4=0.\Leftrightarrow x=2.\)
\(5.\left|3x+2\right|=4.\Leftrightarrow\left[{}\begin{matrix}3x+2=4.\\3x+2=-4.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}.\\x=-2.\end{matrix}\right.\)
\(1,\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\\ \Leftrightarrow\dfrac{x-1}{3}-x=\dfrac{x-2}{2}\\ \Leftrightarrow\dfrac{2\left(x-1\right)-6x}{6}=\dfrac{3\left(x-2\right)}{6}\\ \Leftrightarrow2\left(x-1\right)-6x=3\left(x-2\right)\\ \Leftrightarrow2x-2-6x=3x-6\\ \Leftrightarrow-4x-2=3x-6\)
\(\Leftrightarrow3x-6+4x+2=0\\ \Leftrightarrow7x-4=0\\ \Leftrightarrow x=\dfrac{4}{7}\)
\(2,\left(x-2\right)\left(2x-1\right)=x^2-2x\\ \Leftrightarrow2x^2-4x-x+2=x^2-2x\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(3,3x^2-4x+1=0\\ \Leftrightarrow\left(3x^2-3x\right)-\left(x-1\right)=0\\ \Leftrightarrow3x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(4,\left|2x-4\right|=0\\ \Leftrightarrow2x-4=0\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)
\(5,\left|3x+2\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
\(6,\left|2x-5\right|=\left|-x+2\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=-x+2\\2x-5=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=7\\x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=3\end{matrix}\right.\)
Giải phương trình
\(-3x^2+x+3+\left(\sqrt{3x+2}-4\right)\sqrt{3x-2x^2}+\left(x-1\right)\sqrt{3x+2}=0\)
giải phương trình:\(9x^2-1+\left(3x-1\right).\left(x+2\right)=0\)
mn giúp mình với ạ , mình cần gấp
\(9x^2-1+\left(3x-1\right).\left(x+2\right)=0\)
\(\Leftrightarrow9x^2-1+3x^2+6x-x-2=0\)
\(\Leftrightarrow9x^2+3x^2+6x-x=0+1+2\)
\(\Leftrightarrow12x^2+5x=3\)
\(\Leftrightarrow12x^2+5x-3=0\)
\(\Leftrightarrow12x^2-4x+9x-3=0\)
\(\Leftrightarrow4x\left(3x-1\right)+3\left(3x-1\right)\)
\(\Leftrightarrow\left(4x+3\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+3=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-3\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{4}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy tập nghiệm phương trình là S = \(\left\{\dfrac{-3}{4};\dfrac{1}{3}\right\}\)
giải bất phương trình\(\left\{{}\begin{matrix}\left(x^2-4\right)\left(x^2+1\right)\ge0\\\left(x+1\right)\left(3x^2-x+1\right)< 0\end{matrix}\right.\)
Vì $3x^2-x+1>0,x^2+1>0$
$\to \begin{cases}x^2 \geq 4\x<-1\\\end{cases}$
$\to \begin{cases}\left[ \begin{array}{l}x \geq 2\\x \leq -2\end{array} \right.\\x<-1\\\end{cases}$
$\to x \leq -2$
Vậy tập xác định của phương trình là `(-oo,-2]`
\(1.\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)
\(2.\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(3.4\left(x^2+x+1\right)^2+5x\left(x^2+x+1\right)+x^2=0\)
Giair phương trình hộ mik nhé đúng mik tick cho
1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)
\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)
2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)
Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)
Vậy x = -2 hoặc x = -4
P/s: Bạn Thùy Linh nếu PT chứa nghiệm vô tỉ thì với trình độ bình thường không dễ tìm được nghiệm đâu nhé
3) Ta có: \(4\left(x^2+x+1\right)^2+5x\left(x^2+x+1\right)+x^2=0\)
\(\Leftrightarrow\left[4\left(x^2+x+1\right)^2+4x\left(x^2+x+1\right)\right]+\left[x\left(x^2+x+1\right)+x^2\right]=0\)
\(\Leftrightarrow4\left(x^2+x+1\right)\left(x^2+2x+1\right)+x\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(4x^2+4x+4+x\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(4x^2+5x+4\right)\left(x+1\right)^2=0\)
Xét PT \(4x^2+5x+4=0\) ta có:
\(\Delta_x=5^2-4\cdot4\cdot4=-39< 0\)
\(\Rightarrow\left(x+1\right)^2=0\Rightarrow x=-1\)
Vậy x = -1
giải phương trình:
\(\left(x^2-3x-9\right)^2-\left(3x-17\right)^2=0\)
\(\Leftrightarrow\left(x^2-3x-9-3x+17\right)\left(x^2-3x-9+3x-17\right)=0\)
\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2-26\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+8=0\\x^2-26=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=4;x_2=2\\x^2=26\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=4;x_2=2\\x=\sqrt{26}\end{matrix}\right.\)
Vậy \(S=\left\{4;2;\sqrt{26}\right\}\)
Giải phương trình sau:
\(^{\left(x^2+1\right)^2}\)+3x\(^{\left(x^2+1\right)^2}\)+\(^{2x^2}\)=0
Sửa đề: \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)
Ta có: \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)^2+2x\left(x^2+1\right)+x\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+2x+1\right)+x\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)\left(x^2+x+1\right)=0\)
mà \(x^2+x+1>0\forall x\)
nên \(x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
Vậy: S={-1}