ho biểu thức p=x^2+x-6/X^2-5x+9.(x/x-3-3/x-2) a) tìm điều kiện và rút gon
tìm điều kiện xác định và rút gon biểu thức\(A=(\frac{4}{x+1}-1)\div\frac{9+x^2}{x^2+2x+1}\)
Điều kiện: X khác -1
\(A=\left(\frac{4}{x+1}-1\right):\frac{9+x^2}{x^2+2x+1}\)
\(=>A=\left(\frac{4}{x+1}-\frac{x+1}{x+1}\right):\frac{9+x^2}{\left(x+1\right)^2}\)
\(=>A=\frac{4-x-1}{x+1}\cdot\frac{\left(x+1\right)^2}{9+x^2}\)
\(=>A=\frac{\left(3-x\right)\cdot\left(x+1\right)}{9+x^2}\)
\(\left(\frac{4}{x+1}-1\right):\frac{9+x^2}{x^2+2x+1}\) ĐKXĐ : \(x\ne-1\)
\(\Leftrightarrow\left(\frac{4}{x+1}-\frac{x+1}{x+1}\right).\frac{x^2+2x+1}{9+x^2}\)
\(=\frac{3-x}{x+1}.\frac{\left(x+1\right)^2}{\left(3+x\left(3-x\right)\right)}\)
\(=\frac{x+1}{3+x}\)
\(9+x^2\) đâu phải hằng đẳng thức số 3 đâu
bạn hoàng thị hằng hình như sai đề r
cho biểu thức
A=\(\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)
a,tìm điều kiện xác định và rút gọn A
b,tìm xthuộc z để A nhận giá trị nguyên
Cho biểu thức N= \(\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}\)
a) Tìm điều kiện của x để N có nghĩa rút gọn biểu thức N
b) Tìm x thuộc số nguyên để N thuộc số nguyên
Cho biểu thức P = \(\dfrac{2x}{x-2}+\dfrac{4}{x^2-5x+6}-\dfrac{1}{x-3}\)
a) Tìm điều kiện để P có nghĩa và rút gọn P.
b) Tìm tất cả các giá trị của x để P nguyên.
a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne2\\x\ne3\end{matrix}\right.\)
Ta có : \(P=\dfrac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{4}{\left(x-2\right)\left(x-3\right)}-\dfrac{x-2}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x\left(x-3\right)+4-x+2}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-6x-x+6}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x^2-7x+6}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-2\right)\left(2x-3\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x-3}{x-3}\)
b, Ta có : \(P=\dfrac{2x-3}{x-3}=\dfrac{2x-6+3}{x-3}=2+\dfrac{3}{x-3}\)
- Để P là số nguyên \(\Leftrightarrow x-3\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow x\in\left\{4;3;6;0\right\}\)
Vậy ...
a ĐKXĐ : \(x\ne2,x\ne3\)
\(\Rightarrow P=\dfrac{2x\left(x-3\right)+4-\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-6x+4-x+2}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-7x+6}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-7x+6}{x^2-5x+6}\)b Ta có P = \(\dfrac{2x^2-7x+6}{x^2-5x+6}=\dfrac{x^2-5x+6+x^2-2x}{x^2-5x+6}=1+\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=1+\dfrac{x}{x-3}\)
Để P\(\in Z\) \(\Leftrightarrow1+\dfrac{x}{x-3}\in Z\) \(\Rightarrow\dfrac{x}{x-3}\in Z\) \(\Rightarrow x⋮x-3\) \(\Rightarrow x-3+3⋮x-3\)
\(\Rightarrow3⋮x-3\) \(\Rightarrow\left(x-3\right)\in\left\{-3;-1;1;3\right\}\) \(\Rightarrow x\in\left\{0;2;4;6\right\}\)
Thử lại ta thấy đúng
Vậy...
tìm điều kiện để biểu thức có nghĩa và rút gọn biểu thức
\(\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\left(x\ge0;x\ne3;x\ne-3;x\ne9;x\ne4\right)\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\dfrac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\\ =\dfrac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}:\dfrac{9-x+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{-3}{\sqrt{x}+3}:\dfrac{9-x+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{-3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)^2}\\ =\dfrac{3}{\sqrt{x}-2}\)
Tick hộ nha 😘
Cho biểu thức A =x/x+3 - -6x/x2-9 +2/x-3 ; B=x2
+5x+6
a) Tìm điều kiện xác định của A.
b) Phân tích đa thức B thành nhân tử
c) Rút gọn biểu thức A.
d) Tính giá trị của A khi x = 37.
a) -ĐKXĐ của A:
x+3≠0 ⇔x≠-3.
x2-9≠0 ⇔(x-3)(x+3)≠0 ⇔x-3≠0 hay x+3≠0⇔x≠3 hay x≠-3.
x-3≠0 ⇔x≠3.
b) B=x2+5x+6=x2+2x+3x+6=x(x+2)+3(x+2)=(x+2)(x+3)
c) A=\(\dfrac{x}{x+3}-\dfrac{6x}{x^2-9}+\dfrac{2}{x-3}\)=\(\dfrac{x\left(x-3\right)+2\left(x+3\right)-6x}{\left(x+3\right)\left(x-3\right)}\)=\(\dfrac{x^2-3x+2x+6-6x}{\left(x+3\right)\left(x-3\right)}\)=\(\dfrac{x^2-7x+6}{x^2-9}\)
d)- Vì x=37 thỏa mãn ĐKXĐ của A và A=\(\dfrac{x^2-7x+6}{x^2-9}\)nên:
A=\(\dfrac{37^2-7.37+6}{37^2-9}=\dfrac{279}{340}\)
Cho biểu thức sau
\(A=\dfrac{x-3}{x+2}vàB=\dfrac{6-7x}{x^2-4}+\dfrac{3}{x+2}-\dfrac{2}{2-x}\)
Tìm điều kiện xác định của B và rút gọn biểu thức B
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(B=\dfrac{6-7x}{x^2-4}+\dfrac{3}{x+2}-\dfrac{2}{2-x}\)
\(=\dfrac{6-7x+3x-6+2x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{-2x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=-\dfrac{2}{x+2}\)
Cho biểu thức A= x+2/x+3 - 5/x^2+x-6 + 1/2-x
a) Tìm điều kiện của x để A có nghĩa
b) Rút gọn A
c) Tìm x để A= -3/4
d)Tìm x để biểu thức A nguyên
e)Tính giá trị của biểu thức A khi x^2-9=0
\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}=\frac{x+2}{x+2}+\frac{-5}{x^2+x-6}+\frac{-1}{x-2}\)
=\(\frac{\left(x+2\right)\left(x-2\right)}{x^2+x-6}+\frac{-5}{x^2+x-6}+\frac{-1\left(x+3\right)}{x^2+x-6}=\frac{\left(x+2\right)\left(x-2\right)-5-1\left(x+3\right)}{x^2+x-6}\)
=\(\frac{x^2-4-5-x-3}{x^2+x-6}=\frac{x^2-x-12}{x^2+x+6}\)
\(\frac{x^2-x-12}{x^2+x-6}=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)
Để giá trị của PT A được xác định thì \(\left(x-2\right)\ne0\)và \(\left(x+3\right)\ne0\)
=> \(x\ne2\) và \(x\ne-3\) thì PT được xác định
b) \(\frac{x^2-x-12}{x^2+x-6}=\frac{x^2+3x-4x-12}{\left(x-2\right)\left(x+3\right)}=\frac{x\left(x+3\right)-4\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)
Cho biểu thức: \(P=\dfrac{1}{x^2-x}+\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}\)
a, Tìm điều kiện của \(x\) để biểu thức P có giá trị
b, Rút gọn biểu thhuwcs P
c, Tính giá trị của P khi \(x\) thỏa mãn: \(x^3-x^2+2=0\)
a: ĐKXĐ: \(x\notin\left\{0;1;2;3;4;5\right\}\)
b: \(P=\dfrac{1}{x^2-x}+\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}\)
\(=\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\dfrac{-1}{x}+\dfrac{1}{x-1}-\dfrac{1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}-\dfrac{1}{x-4}+\dfrac{1}{x-5}\)
\(=\dfrac{1}{x-5}-\dfrac{1}{x}\)
\(=\dfrac{x-\left(x-5\right)}{x\left(x-5\right)}=\dfrac{5}{x\left(x-5\right)}\)
c: \(x^3-x^2+2=0\)
=>\(x^3+x^2-2x^2+2=0\)
=>\(x^2\cdot\left(x+1\right)-2\left(x-1\right)\left(x+1\right)=0\)
=>\(\left(x+1\right)\left(x^2-2x+2\right)=0\)
=>x+1=0
=>x=-1
Khi x=-1 thì \(P=\dfrac{5}{\left(-1\right)\left(-1-5\right)}=\dfrac{5}{\left(-1\right)\cdot\left(-6\right)}=\dfrac{5}{6}\)