Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
^($_DUY_$)^

Cho biểu thức: \(P=\dfrac{1}{x^2-x}+\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}\)
a, Tìm điều kiện của \(x\) để biểu thức P có giá trị
b, Rút gọn biểu thhuwcs P
c, Tính giá trị của P khi \(x\) thỏa mãn: \(x^3-x^2+2=0\)

Nguyễn Lê Phước Thịnh
17 tháng 11 2023 lúc 13:19

a: ĐKXĐ: \(x\notin\left\{0;1;2;3;4;5\right\}\)

b: \(P=\dfrac{1}{x^2-x}+\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}\)

\(=\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)

\(=\dfrac{-1}{x}+\dfrac{1}{x-1}-\dfrac{1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}-\dfrac{1}{x-4}+\dfrac{1}{x-5}\)

\(=\dfrac{1}{x-5}-\dfrac{1}{x}\)

\(=\dfrac{x-\left(x-5\right)}{x\left(x-5\right)}=\dfrac{5}{x\left(x-5\right)}\)

c: \(x^3-x^2+2=0\)

=>\(x^3+x^2-2x^2+2=0\)

=>\(x^2\cdot\left(x+1\right)-2\left(x-1\right)\left(x+1\right)=0\)

=>\(\left(x+1\right)\left(x^2-2x+2\right)=0\)

=>x+1=0

=>x=-1

Khi x=-1 thì \(P=\dfrac{5}{\left(-1\right)\left(-1-5\right)}=\dfrac{5}{\left(-1\right)\cdot\left(-6\right)}=\dfrac{5}{6}\)


Các câu hỏi tương tự
🙂T😃r😄a😆n😂g🤣
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Mộc Miên
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Phương Linh
Xem chi tiết
Hùng Chu
Xem chi tiết
Vũ Thảo Nhi
Xem chi tiết
Nữ hoàng sến súa là ta
Xem chi tiết
LanAnh
Xem chi tiết