Bài 4( 1đ ) : Cho biểu thức
B = \(\left(\dfrac{2x+1}{x-1}+\dfrac{8}{x^2-1}-\dfrac{x-1}{x+1}\right).\dfrac{x^2-1}{5}\)
a/ Tìm điều kiện xác định của biểu thức B
b/ Rút gọn biểu thức B, và chứng tỏ B > 0 với mọi x = +-1
cho biểu thức :
A = 2x-9 / x^2-5x+6 - x+3 / x-2 - 2x+1 /3-x
a,Rut gọn biểu thức A
b,Tìm x ϵ Z để A ϵ Z
Cho phân thức \(\dfrac{3x+3}{x^2-1}\)
a, Tìm điều kiện của x để giá trị phân thức được xác định.
b, Rút gọn phân thức trên.
c, Tìm x để phân thức có giá trị bằng -2
Tìm x thỏa mãn điều kiện
(2x+1)^3-(2x+1).(4x^2-2x+1)-3.(2x-1)^2=15
y.(y+3)^2-(y+2).(y^2-2y+4)-6.(y+5).(y-5)=97
(x-3)^3-(x-3).(x^2+3x+9)+9.(x+1)^2=18
x.(x-4).(x+4)-(x-5).(x^2+5x+25)=13
2.Rút gọn biểu thức rồi tính giá trị
3.(x-1).(x^2+x+1)+(x-1)^3-4x.(x+1).(x-1) tại x=-1
(3xy-2).(9x^2y^2+6xy+4)-3xy.(3xy+1)^2 tại x=-2010,y=-1/2010
1,Tìm x biết
a, 6x.(3x+15)-2x.(9x-2)=17
b,(15x-2x).(4x+1)-(13x-4x).(2x-3)-(x-1).(x+2)+x+2=52
2, Cho biểu thức P=3x.(4x+1)+5x2.(x-1)-4x.(3x+9)+x.(5x-5x2)
a, Rút gọn biểu thức P
b,Giá trị của P khi \(\left|x\right|=2\)
c,Tìm x để P=2017
3, Tìm Min của biểu thức sau
f(x)=(x-1)(x+2).(x+3).(x+6)
3A. Rút gọn các biểu thức sau: a) 5x ^ 2 * (3x ^ 2 - 1) - 6x(4x ^ 3 - 3x + 1) - 2x ^ 3 * (3x - 1) b) 1/2 * x(x ^ 2 - 2/5 * x + 2) - 3/4 * x ^ 2 * (x + 1/3) - x(x + 1) c) 1 1/2 * x ^ 2 * (x ^ 2 - 2x) - 2x(x ^ 3 + x ^ 2 + 1) + 2(x - 1) d) x(x ^ 3 - 2x ^ 2) + 5x(x ^ 2 - 2x + 1/2) - x ^ 2 * (x ^ 2 - x + 1) . Rút gọn các biểu thức sau: 3B a) 3x(- x ^ 2 - 5) + 5x(x ^ 3 + 7) - 3x ^ 2 * (x ^ 2 - x + 5) + 2(4 - x) ; b) 25x - 4(3x - 1) + 7x(5 - 2x ^ 2) ; c) 4x(x ^ 3 - 4x ^ 2) + 2x(2x ^ 3 - 3x ^ 2 + 7x + 1) ; d) - 4/2 * x ^ 2 * (3x ^ 2 - 6x + 9) + 8x(x ^ 3 - 3x ^ 2 + 2x - 1) - x(x ^ 2 - 2x) 4A. Rút gọn các biểu thức sau: a) (4x - 1)(3x + 2) - 5x(x - 3) ; b) (5x - 2)(x + 1) - 2x(x ^ 2 + x - 3) ; c) (x + 1)(2x - 1) + x(x ^ 2 - x + 1) ; d) (3x ^ 2 + x + 2) * 0.3 - (2x + 1) * 0.2(3 + x) .
Cho biểu thức A= \(\left(\dfrac{x^2-16}{x-4}-1\right):\left(\dfrac{x-2}{x-3}+\dfrac{x+3}{x+1}+\dfrac{x+2-x^2}{x^2-2x-3}\right)\)
1, Rút gọn biểu thức A.
2, Tìm số nguyên x để \(\dfrac{A}{x^2+x+1}\) nhận giá trị nguyên.
Bài 1: Tìm x, biết:
a) (10x + 9)x - (5x - 1) (2x + 3) = 8
b) (3x - 5) (7 - 5x) + (5x + 2) (3x - 2) - 2 = 0
c) x (x + 1) (x + 6) - x3 = 5x.
Bài 2: Chứng minh rằng giá trị biểu thức không phụ thuộc vào biến.
a) (x2 - 7) (x + 2) - (2x - 1) (x + 4) + x (x2 - 2x - 22) + 35
b) (x + z) (x - z) - y (2x - y) - (x - y + z) (x - y - z).
Bài 3: Tính giá trị của biểu thức
A= (3x + 5) (2x - 1) + (4x - 1) (5x + 2) tại |x| = 2
B= (x - 3) (x + 7) - (2x - 5) (x - 1) tại x = -1.
1) CMR: 543-54 khong la so chinh phuong
2) Tim x:
2(x-2).(x+3)-x2+4=0
3) Rut gon
a)2(x+1)2-3(x-1)2+(x+2).(5-x)
b)(3x-1)3+(3x-1)3-6x2+9
4) A= (x-5).(x+2)+3.(x-2).(x+2)-(3x-1)2+5x2
a) rut gon A
b) tinh a khi x =1/2