Bài 1: Tìm x, biết:
a) (10x + 9)x - (5x - 1) (2x + 3) = 8
b) (3x - 5) (7 - 5x) + (5x + 2) (3x - 2) - 2 = 0
c) x (x + 1) (x + 6) - x3 = 5x.
Bài 2: Chứng minh rằng giá trị biểu thức không phụ thuộc vào biến.
a) (x2 - 7) (x + 2) - (2x - 1) (x + 4) + x (x2 - 2x - 22) + 35
b) (x + z) (x - z) - y (2x - y) - (x - y + z) (x - y - z).
Bài 3: Tính giá trị của biểu thức
A= (3x + 5) (2x - 1) + (4x - 1) (5x + 2) tại |x| = 2
B= (x - 3) (x + 7) - (2x - 5) (x - 1) tại x = -1.
B1:
a) \(\left(10x+9\right)x-\left(5x-1\right)\left(2x+3\right)=8\)
\(10x^2+9x-10x^2-15x+2x+3-8=0\)
\(-4x-5=0\)
\(-4x=5\Leftrightarrow x=-\dfrac{5}{4}\)
b) \(\left(3x-5\right)\left(7-5x\right)+\left(5x+2\right)\left(3x-2\right)-2=0\)
\(21x-15x^2-35+25x+15x^2-10x+6x-4-2=0\)
\(42x-41=0\)
\(x=\dfrac{41}{42}\)
3.
\(x=\left|2\right|\Rightarrow x=\pm2\)
Thay x = 2 vào A ta có:
A = (3.2+5)(2.2+1) + (4.2+1)(5.2+2)
= 11.5 + 9.12
= 55 + 108
= 163
Thay x = -2 vào A ta có:
A = (-2.3+5)(-2.2+1) + (-2.4+1)(-2.5+2)
= (-1)(-3) + (-7)(-8)
= 3 + 56
= 59
Thay x = -1 vào B ta có:
B = (-1-3)(-1+7) - (-1.2-5)(-1-1)
= (-4).6 - (-7)(-2)
= -24 - 14
= -38
Vậy \(A=163\Leftrightarrow x=2\)
\(A=59\Leftrightarrow x=-2\)
\(B=-38\Leftrightarrow x=-1\)