Cho đường thẳng (d3): 4mx + (2m - 1)y = m + 2. Tìm giá trị của m để 3 đường thẳng (d1); (d2) và d3) đồng quy..
Giúp t nha mấy homie ^^ ..
Tìm giá trị của m để ba đường thẳng sau đây đồng quy: ( d 1 ): 5x + 11y = 8, ( d 2 ): 10x – 7y = 74, ( d 3 ): 4mx + (2m – 1)y = m + 2
Tọa độ giao điểm của ( d 1 ) và ( d 2 ) là nghiệm của hệ phương trình:
Tọa độ giao điểm của ( d 1 ) và ( d 2 ) là (x; y) = (6; -2)
Để ba đường thẳng ( d 1 ), ( d 2 ), ( d 3 ) đồng quy thì ( d 3 ) phải đi qua giao điểm của ( d 1 ) và ( d 2 ), nghĩa là (x; y) = (6; -2) nghiệm đúng phương trình đường thẳng ( d 3 ).
Khi đó ta có: 4m.6 + (2m – 1).(-2) = m + 2
⇔ 24m – 4m + 2 = m + 2 ⇔ 19m = 0 ⇔ m = 0
Vậy với m = 0 thì 3 đường thẳng ( d 1 ), ( d 2 ), ( d 3 ) đồng quy.
Tìm giá trị của m để 3 đường thẳng sau đồng quy.
(d1):5x + 11y = 8
(d2):10x - 7y = 74
(d3):4mx + (2m-1)y= m+ 2
Tìm giá trị của m để 3 đường thẳng sau đồng quy:
(d1): 5x+11y=8
(d2); 10x-7y=74
(d3): 4mx+(2m-1)y=m+2
Tìm giá trị của m để 3 đường thẳng sau đồng quy
(d1): 5x+11y=8
(d2): 10x-7y=74
(d3): 4mx+(2m-1)y=m+2
Cho đường thẳng (d1): 5x + 11y = 8; (d2): 10x - 7y = 74; (d3): 4mx + (2m - 1)y = m + 2. Tìm giá trị của m để 3 đường thẳng (d1); (d2) và d3) đồng quy..
Giúp t nha mấy homie ^^ ..
Xét hệ pt : \(\left\{{}\begin{matrix}5x+11y=8\left(1\right)\\10x-7y=74\left(2\right)\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}10x+22y=16\left(1\right)\\10x-7y=74\left(2\right)\end{matrix}\right.\)
Trừ 2 vế pt (1) cho pt (2), ta dược :
29y = -58 ⇔ y = -2
Thay y= -2 vào pt (2), ta dược:
10x + 14 = 74 ⇔ x = 6
Thay x = 6, y = -2 vào pt (3), ta dược:
24m -2(2m-1) = m + 2
⇔ 24m - 4m + 2 = m + 2
⇔ 19m = 0
⇔ m = 0
Vậy m = 0 thì 3 đường thẳng đồng qui
Câu 3:Cho đường thẳng (d1):y=(m-1)x+4.Tìm giá trị của m để:
a)Đường thẳng (d1) và đường thẳng (d2):y=(2m+3)x+3m-1 song song với nhau.
b)Đường thẳng (d1) và đường thẳng (d3):y=x+2m+2 cắt nhau tại một điểm có tung độ bằng 3.
c)Đường thẳng (d1) tiếp xúc với đường tròn tâm O bán kính 2\(\sqrt{2}\)(với O là gốc tọa độ)
Để hàm số y=(m-1)x+4 là hàm số bậc nhất thì \(m-1\ne0\)
hay \(m\ne1\)
a) Để (d1) và (d2) song song với nhau thì \(\left\{{}\begin{matrix}m-1=2m+3\\3m-1\ne4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-2m=3+1\\3m\ne5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-m=4\\3m\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-4\\m\ne\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow m=-4\)
Kết hợp ĐKXĐ, ta được: m=-4
Vậy: Để (d1) và (d2) song song với nhau thì m=-4
a: Tọa độ giao điểm của đường thẳng (d1) và đường thẳng (d2) là:
\(\left\{{}\begin{matrix}3x-1=2x+1\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2x=2+1\\y=2x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=3\\y=2\cdot3+1=7\end{matrix}\right.\)
Thay x=3 và y=7 vào (d), ta được:
\(3\left(4m+5\right)-2m+7=7\)
=>\(12m+15-2m=0\)
=>10m=-15
=>m=-3/2
b: để (d)//(d3) thì \(\left\{{}\begin{matrix}4m+5=-3\\-2m+7< >2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4m=-3-5=-8\\-2m< >-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-2\\m< >\dfrac{5}{2}\end{matrix}\right.\)
=>m=-2
tìm m để các đường thẳng sau đây đồng quy
(d1): 5x + 11y = 8
(d2): 4mx + (2m-1) = m+2
(d3): 10x - 7y = 74
Hình như ở đường thẳng thứ 2 bạn bị thiếu mất y thì phải. Nếu vậy thì cách làm như sau:
Ta viết lại các đường thẳng :
(d1): \(y=\dfrac{-5}{11}x+\dfrac{8}{11}\); (d2): \(y=\dfrac{-4m}{2m-1}x+\dfrac{m+2}{2m-1}\); (d3): \(y=\dfrac{10}{7}x-\dfrac{74}{7}\)
Hoành độ giao điểm 2 đường thẳng (d1) và (d3) là nghiệm của phương trình: \(\dfrac{-5}{11}x+\dfrac{8}{11}=\dfrac{10}{7}x-\dfrac{74}{7}\) \(\Leftrightarrow\left(-5\right)x\cdot7+8\cdot7=10x\cdot11-74\cdot11\)
\(\Leftrightarrow-35x+56=110x-814\) \(\Leftrightarrow110x+35x=56+814\Leftrightarrow145x=870\)
\(\Leftrightarrow x=6\) \(\Rightarrow y=-\dfrac{5}{11}\cdot6+\dfrac{8}{11}=-2\) (Thay giá trị của x vừa tìm được vào phương trình đường thẳng (d1) \(\Rightarrow\) Hai đường thẳng cắt nhau tại điểm I(6;-2)
Để 3 đường thẳng đồng quy \(\Leftrightarrow\) Đường thẳng (d2) cũng đi qua điểm I(6;-2) \(\Rightarrow\) \(-2=-\dfrac{4m}{2m-1}\cdot6+\dfrac{m+2}{2m-1}\) \(\Leftrightarrow-2=\dfrac{-24m+m+2}{2m-1}\Leftrightarrow-2=\dfrac{-23m+2}{2m-1}\Leftrightarrow2=\dfrac{23m-2}{2m-1}\Rightarrow4m-2=23m-2\Leftrightarrow23m-4m=2-2\)
19m=0\(\Leftrightarrow m=0\) Vậy ...
\(\left(d1\right),\left(d2\right),\left(d3\right)đồngquy\)
\(\left\{{}\begin{matrix}5x+11y=8\\10x-7y=74\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=-2\end{matrix}\right.\)
Thay : x vào (d2)
\(\Rightarrow6\cdot4m+\left(2m-1\right)=m+2\)
\(\Rightarrow m=\) \(0.12\)
cho 3 đường thẳng y=3x-2(d1); y=3x-2y=1(d2) và y=(m-2)x+2m-3(d3). tìm m để 3 đường thẳng d1,d2,d3 cùng đi qua 1 điểm
Ta có: (d2): y=3x-2y=1 => y: 3x-2y-1
Phương trình tung độ giao điểm của (d1) và (d2) là:
3x-2 = 3x-2y-1 => 3x-3x+2y=-1+2 => 2y=1 => y = 1/2
=> x = (1/2+2):3 = 5/6
Vậy (d1) và (d2) cùng đi qua điểm C(5/6; 1/2)
Thay x = 5/6 và y = 1/2 vào (d3) ta được: 1/2 = (m-2).5/6+2m-3
=> 1/2 = 5/6m - 5/3 + 2m - 3
=> 31/6 = 17/6 m
=> m = 31/17
Vậy m = 31/17 thì 3 đường thẳng (d1);(d2);(d3) cùng đi qua 1 điểm