Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc
Xem chi tiết
Akai Haruma
25 tháng 2 2021 lúc 13:45

Lời giải:

Xét tam giác $ADC$ có $B,P,M$ thẳng hàng và thuộc các cạnh của tam giác $ADC$ nên áp dụng định lý Menelaus:

$\frac{AM}{CM}.\frac{PC}{PD}.\frac{BD}{BA}=1$

$\Leftrightarrow \frac{PC}{PD}=\frac{AB}{BD}=\frac{BD+AD}{BD}$

$=1+\frac{AD}{BD}$

Mà $\frac{AD}{BD}=\frac{AC}{BC}$ theo tính chất đường phân giác

Do đó: $\frac{PC}{PD}=1+\frac{AC}{BC}$

$\Rightarrow \frac{PC}{PD}-\frac{AC}{BC}=1$

 Ta có đpcm.

Akai Haruma
25 tháng 2 2021 lúc 13:47

Hình vẽ:undefined

Khanh Dang Le Duc
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 3 2023 lúc 21:45

PC/PD-AC/BC

=MC/ME-AD/DB

=MA/ME-AD/DB

\(=\dfrac{ME+EA}{ME}-\dfrac{AE}{EM}\)

=1

Phan Thùy Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 5 2021 lúc 10:03

a) Xét tứ giác ABCE có 

M là trung điểm của đường chéo AC(gt)

M là trung điểm của đường chéo BE(B và E đối xứng nhau qua M)

Do đó: ABCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Cô Gái Mùa Đông
Xem chi tiết
Nguyễn Minh Hiệu
Xem chi tiết
Võ Ngọc Trường An
10 tháng 2 2017 lúc 22:37

P ở đâu ra vậy bạn? bạn viết đúng đề đi. có thể mình giúp bạn được

diệu an
Xem chi tiết
Tiểu Kì Nhi
Xem chi tiết
Linh Yoo
Xem chi tiết
Trúc Giang
22 tháng 3 2021 lúc 21:46

a) \(BM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)

Tam giác ABM có MD là p/giác

\(\Rightarrow\dfrac{AD}{BD}=\dfrac{AM}{BM}=\dfrac{6}{5}\)

b) Tam giác AMC có ME là p/giác

\(\Rightarrow\dfrac{MC}{AM}=\dfrac{EC}{AE}\)

Mà: MC = BM (GT)

\(\Rightarrow\dfrac{BM}{AM}=\dfrac{EC}{AE}\)

c) Có: \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\left(cmt\right)\) (1)

Tam giác AMC có ME là p/giác

\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{MC}\)

Mà: BM = MC (GT)

\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{BM}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{EC}\)

=> DE // BC

Nguyễn Lê Phước Thịnh
22 tháng 3 2021 lúc 21:37

a) Ta có: M là trung điểm của BC(gt)

nên \(MB=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Xét ΔAMB có MD là đường phân giác ứng với cạnh AB(Gt)

nên \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{BD}=\dfrac{6}{5}\)

Trần Khánh Linh
Xem chi tiết

Gọi O à 1 điểm nằm trên đường trung trực của BC (O thuộc BC)

Xét \(\Delta ABM\)và \(\Delta OBM\)

\(\widehat{ABM}=\widehat{MBO}\)(gt)

BM chung

\(\widehat{A}=\widehat{BOM}\)(=90o)

=> \(\Delta ABM\)=\(\Delta OBM\)(ch-gn)

=> \(\widehat{AMB}=\widehat{BMO}\)(cặp góc tương ứng)

Xét\(\Delta MBO\)\(\Delta MCO\) có

MO chung

\(\widehat{MOB}=\widehat{MOC}\)(=900)

BO=OC 

=> \(\Delta MBO\)=\(\Delta MCO\)(2cgv)

=>\(\widehat{BMO}=\widehat{CMO}\)(cgtư)

.=> \(\widehat{AMB}=\widehat{BMO}\)=\(\widehat{CMO}\) 

mà \(\widehat{AMB}+\widehat{BMO}+\widehat{CMO}=180^o\)

=>\(\widehat{AMB}=\widehat{BMO}=\widehat{CMO}=60^0\)

=> \(\widehat{ACB}=90^{o^{ }}-60^0=30^0\)