Cho tam giác ABC, trung tuyến BM cắt đường phân giác CD của góc ACB tại P. Chứng minh: \(\dfrac{PC}{PD}-\dfrac{AC}{BC}=1\)
Cho tam giác ABC vuông tại A (AB < AC), kẻ đường cao AH, đường trung tuyến AM. Đường thẳng vuông góc với AM tại A cắt đường thẳng BC tại D. Chứng minh rằng:
a) AB là tia phân giác của góc DAH.
b) BH.CD = BD.CH
Cho ∆ABC có đường trung tuyến BM cắt tia phân giác CD của góc ACB tại P
CM: PC/PD - AC/BC = 1
Bài 5:Cho tam giác ABC(AB=m,AC=n,m<n),đường trung tuyến AM và đường phân giác AD của góc BAC.
a) chứng minh D nằm trong đoạn thẳng BM.
b)chứng minh tỉ số diện tích của 2 tam giác ADB và ADC là m/n.
c)tính diện tích tam giác ADM,nếu diện tích tam giác ABC là S.
d) tính diện tích tam giác ADM,nếu S=14cm2,m=3cm,n=4cm.
Bài 3:Cho tam giác ABC với trung tuyến AM.Tia phân giác góc AMB cắt cạnh AB tại D,tia phân giác góc AMC cắt cạnh AC tại E.
a)Chứng minh DE và BC song song với nhau.
b)Gọi I là giao điểm của AM,DE.Chứng minh IM=\(\dfrac{1}{2}\)DE.
Cho tam giác ABC vuông tại A (AB < AC), kẻ đường cao AH, đường trung tuyến AM. Đường thẳng vuông góc với AM tại A cắt đường thẳng BC tại D. Chứng minh rằng: a) AB là tia phân giác của góc DAH. b) BH.CD = BD.CH
Cho tam giác ABC có BC < BA, đường phân giác BE và trung tuyến BD ( E và D thuộc AC). Đường thẳng vuông góc với BE kẻ từ C cắt BE,BD tại F và G. Chứng minh rằng:a)GE//BCb)DF đi qua trung điểm của GE
cho ABCD là hình thang cân (AB//CD,AB<CD,góc ADC=60 độ),đường phân giác của góc ADC cắt AC,AB lần lượt tại I,M.Kẻ AE//BC(E thuộc DC).
a) chứng minh tam giác ADE là tam giác đều và DC=AB+AM.
b)Cho IA/IC=4/11 và MA-MB=6cm.Tính MB/AM và AM,MB.
Cho tam giác ABC và ba đường phân giác AM, BN, CP cắt nhau tại O. Ba cạnh AB, BC, CA tỉ lệ với 4, 7, 5
a) Tính MC, biết BC=18cm
b) Tính AC, biết NC-NA=3cm
c) Tính tỉ số OP/OC
d) Chứng minh: MB/MC.NC/NA.PA/PB=1