Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuyet Anh Lai
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 3 2022 lúc 20:12

a: Xét ΔABQ và ΔACR có 

AB=AC

\(\widehat{ABQ}=\widehat{ACR}\)

BQ=CR

Do đó: ΔABQ=ΔACR

Suy ra: AQ=AR

b: Ta có: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là đường cao

Ta có: ΔAQR cân tại A

mà AH là đường cao

nên AH là tia phân giác của góc QẢ

hay \(\widehat{QAH}=\widehat{RAH}\)

Đỗ Băng Châu
Xem chi tiết
Chu Mi Mi
11 tháng 2 2020 lúc 18:26

a, tam giác ABC cân tại A => góc ABC = góc ACB (tc)

góc ABC + góc ABQ = 180

góc ACB + góc ACR = 180

=> góc ABQ = góc ACR 

xét tam giác ABQ và tam giác ACR :  BQ = CR (gt)

AB = AC do tam giác ABC cân tại A (gt)

=> tam giác ABQ = tam giác ACR (c-g-c)

=> AQ = AR (đn)

b, H là trđ của BC (gt)

=> BH = HC (đn)

BH + BQ = HQ

HC + CR = HR 

BQ = CR (gt)

=> QH = CR

xét tam giác AHQ và tam giác AHR có : AQ = AR (câu a)

AH chung

=> tam giác AHQ = tam giác AHR (c-c-c)

Khách vãng lai đã xóa
leminhthuan
Xem chi tiết
SKT_Ruồi chê Nhặng mất v...
21 tháng 1 2018 lúc 8:36

A B C Q R H

a, Ta có: \(\Delta ABC\)cân ở A

\(\Rightarrow\widehat{B}=\widehat{C}\)

\(\Rightarrow180^0-\widehat{B}=180^0-\widehat{C}\)

\(\Rightarrow\widehat{ABQ}=\widehat{ACR}\)

Xét \(\Delta ABQ\)và \(\Delta ACR\)có:

\(AB=AC\left(gt\right)\)

\(\widehat{ABQ}=\widehat{ACR}\left(cmt\right)\)

\(BQ=CR\left(gt\right)\)

\(\Rightarrow\Delta ABQ=\Delta ACR\left(c.g.c\right)\)

\(\Rightarrow AQ=AR\)(2 cạnh tương ứng)

b, Ta có:

\(\hept{\begin{cases}BQ=CR\\HB=HC\end{cases}}\)

\(\Rightarrow BQ+HB=CR+HC\)

\(\Rightarrow HQ=HR\)

Xét \(\Delta AHQ\)và \(\Delta AHR\)có :

\(AQ=AR\left(cma\right)\)

\(HQ=HR\left(cmt\right)\)

\(AH:c.chung\)

\(\Rightarrow\Delta AHQ=\Delta AHR\left(c.c.c\right)\)

\(\Rightarrow\widehat{QAH}=\widehat{RAH}\)( 2 cạnh tương ứng )

Nguyễn Diệu Linh
10 tháng 2 2019 lúc 12:41

thanks

Clear YT_VN
Xem chi tiết
Trần Mạnh
18 tháng 2 2021 lúc 20:48

a) Vì △ABC cân tại A ⇒ AB = AC ( tính chất t/g cân )⇒ABCˆ=ACBˆ(tính chất t/g cân)⇒ABC^=ACB^(tính chất t/g cân)Có : QBAˆ+ABCˆ=180o(kề bù)QBA^+ABC^=180o(kề bù)⇒QBAˆ=180o−ABCˆ⇒QBA^=180o−ABC^Có: ACBˆ+ACRˆ=180o(kề bù)ACB^+ACR^=180o(kề bù)⇒ACRˆ=180o−ACBˆ⇒ACR^=180o−ACB^Mà ABCˆ=ACBˆ(cmt)ABC^=ACB^(cmt)⇒ABQˆ=ACRˆ⇒ABQ^=ACR^Xét △ABQ và △ACR có:AB = AC ( cmt )ABQˆ=ACRˆABQ^=ACR^ ( cmt )BQ = CR ( gt )⇒ △ABQ = △ACR ( c.g.c )⇒ AQ = AR ( tương ứng )

Nguyễn Lê Phước Thịnh
18 tháng 2 2021 lúc 21:06

Sửa đề: BQ=CR

a) Ta có: \(\widehat{ABQ}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACR}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABQ}=\widehat{ACR}\)

Xét ΔABQ và ΔACR có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABQ}=\widehat{ACR}\)(cmt)

BQ=CR(gt)

Do đó: ΔABQ=ΔACR(c-g-c)

Suy ra: AQ=AR(hai cạnh tương ứng)

Nguyen Le Trung
Xem chi tiết
Trương Tuấn Dũng
14 tháng 2 2016 lúc 15:41

vẽ hình đi bạn

Lê Ngô Uy
Xem chi tiết
Cố Tử Thần
30 tháng 1 2019 lúc 15:53

a, xét tam giác ABQ và tam giác ACR có:

góc ABQ= góc ACR( do góc ABC= góc ACB)

AB=AC(gt)

BQ=CR(gt)

suy ra tam giác ABQ = tam giác ACR(c.g.c)

suy ra AQ=AR( đpcm)

b,xét tam giác AQH và tam giác ARH có:

AQ=AR( câu a)

góc AQB= góc ARC( do tam giác ABQ = tam giác ACR)

QH=RH( vì QB=CR, BH=CH)

suy ra tam giác AQH= tam giác ARH(c.g.c)

suy ra góc QAH= góc RAH( 2 góc tương ứng)

Bùi nhật Nam
18 tháng 2 2019 lúc 19:48

b. ​Lấy Đ làm trung điểm của AC ,kẻ DM vuông góc với AC (M thuộc BC)chứng minh Tam giác ABM đều​

a. tính số do các góc của tam giác ABC

Cho tam giác ABC có số đo góc A,góc B,gócC lần lượt tỉ lệ với 3,2,1

Exo Hunhan
Xem chi tiết
Cu Giai
23 tháng 1 2017 lúc 19:00

CÓ TAM GIÁC ABC VUÔNG TẠI A

SUY RA AB=AC( ĐN TAM GIÁC CÂN)

SUY RA GÓC B = GÓC C( ĐN TAM GIÁC CÂN)

CÓ GÓC QBA+ GÓC ABC=180 ĐỘ( HAI GÓC KỀ BÙ)

CÓ GÓC RCA+ GÓC ACB = 180 ĐỘ( HAI GÓC KỀ BÙ)

MÀ GÓC ABC= GÓC ACB( CMT)

SUY RA GÓC QBA = GOC RCA

XÉT TAM GIÁC ABQ VÀ TAM GIÁC ACR CÓ

QB= RC(GT)

GOC QBA = GOC RCA( CMT)

AB=AC( CMT)

SUY RA TAM GIAC ABQ = TAM GIAC ACR( C-G-C)

SUY RA AQ= AR( 2 CẠNH TƯƠNG ỨNG)

b)CO H LA TRUNG DIEM CUA BC

SUY RA BH=HC

CO HR=HC+CR

HQ=HB+BQ

MA BQ= CR

BH= CH

SUY RA HQ=HR

XET TAM GIAC AQH VA TAM GIAC ARH CO

AQ= AR( CM Ở CÂU A

AH CHUNG

QH= RH( CMT)

SUY RA TAM GIAC AQH = TAM GIAC ARH(C-C-C)

SUY RA GÓC QAH= GOC RAH

K GIÚP MÌNH NHA

RF huy
Xem chi tiết
Bùi Tiến Chung
Xem chi tiết
Nguyễn Thị Bích Thủy
24 tháng 1 2018 lúc 20:14

A Q B H C R 1 3 2 4
Chứng minh :
a)Vì trên tia đối của tia BC và CB lấy theo thứ tự hai điểm Q và R sao cho BQ=CR.
⇒ QB + BC = QC
⇒ CR + CB = BR
Mà BQ = CR ( gt )
⇒ QC = BR
Xét △ACQ và △ABR có :
AC = AB ( gt )
\(\widehat{ACQ}=\widehat{ABR}\text{ ( t/c t/g cân )}\)
CQ = BR ( cmt )
⇒ △ACQ = △ABR ( c.g.c)
⇒ AQ = AR ( tương ứng )
b) Có: QB + BH = QH
HC + CR = HR
Mà QB = CR ( gt ) ; BH =HC ( gt )
⇒ QH = HR
Xét △AHQ và △AHR có :
AH - cạnh chung
AQ = AR ( cmt )
QH = HR ( cmt )
⇒ △AHQ = △AHR ( c.c.c )
\(\widehat{QAH}=\widehat{RAH}\) ( tương ứng )

Phạm Thảo Vân
24 tháng 1 2018 lúc 20:21

A B C Q R H

a) Vì góc ABQ + góc ABR = 180o ( hai góc kề bù ) ; góc ACQ + góc ACR = 180o ( hai góc kề bù ) mà góc ABC = góc ACB ( tam giác ABC cân tại A ) => góc ABQ = góc ACR

Xét tam giác ABQ và tam giác ACR , có :

AB = AC ( tam giác ABC cân tại A )

góc ABQ = góc ACR ( chứng minh trên )

BQ = CR ( gt )

=> tam giác ABQ = tam giác ACR ( c-g-c )

=> AQ = AR ( hai cạnh tương ứng )

Vậy AQ = AR

b) Vì HB + BQ = HQ ; HC + CR = HR mà HB = HC ( gt ) ; BQ = CR ( gt ) => HQ = HR

Xét tam giác QAH và tam giác RAH ,có :

AH : chung

AQ = AR ( chứng minh câu a )

HQ = HR ( chứng minh trên )

=> tam giác QAH = tam giác RAH ( c-c-c )

Vậy tam giác QAH = tam giác RAH ( c-c-c )

Nguyễn Anh Tuấn
25 tháng 1 2018 lúc 21:56

a Xét \(\Delta ABQ\)\(\Delta ACR\) có :

AB = AC (\(\Delta ABC\) cân tại A)

BQ = CR (gt)

\(\widehat{ABQ}+\widehat{ABC}=\widehat{ACR}+\widehat{ACB}\) (hai góc kề bù)

\(\Rightarrow\widehat{ABQ}=\widehat{ACR}\)

\(\Rightarrow\Delta ABQ=\Delta ACR\) (c . g . c)

\(\Rightarrow\) AQ = AR

Xét \(\Delta AQH\)\(\Delta ARH\:\)có :

AQ = AR (cmt)

Vì BQ = CR (gt)

Mà BH = HC (gt)

\(\Rightarrow\) BQ + BH = CR + HC

\(\Leftrightarrow\) QH = HR

\(\widehat{AQH}=\widehat{ARH\:}\) (\(\Delta ABQ=\Delta ACR\))

\(\Rightarrow\) \(\Delta AQH=\Delta ARH\:\) (c . g . c)

\(\Rightarrow\widehat{AQH}=\widehat{ARH}\)

Nếu bạn thấy cách đó dài thì bạn có thể làm theo cách này

Xét \(\Delta ABH\)\(\Delta ACH\) có :

AH : cạnh chung

AB = AC (\(\Delta ABC\) cân tại A)

BH = BC (gt)

\(\Rightarrow\Delta ABH=\Delta ACH\) (c . c . c)

Hoặc Xét \(\Delta ABH\)\(\Delta ACH\) có :

\(\widehat{ABH}=\widehat{ACH}\) (\(\Delta ABC\) cân tại A)

AB = AC (\(\Delta ABC\) cân tại A)

BH = BC (gt)

\(\Rightarrow\Delta ABH=\Delta ACH\) (c . g . c)

Bạn chọn cách nào cũng được

ok