Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huytd
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 7 2023 lúc 19:32

a: Xét ΔAND và ΔABM có

góc A chung

AN=DM

AB=AD

=>ΔAND=ΔABM

=>AN=AM

góc NAD=góc BAM

=>góc NAD+góc DAM=góc DAM+góc BAM=90 độ

=>góc NAM=90 độ

=>ΔNAM vuông cân tại A

b: Xét ΔABM và ΔPDA có

góc B=góc D

góc BAM=góc APD

=>ΔABM đồng dạng với ΔPDA

=>AB/BM=PD/AD

=>AB*AD=BM*PD=BC^2
c: Xét ΔAIH và ΔAQD có

góc A chung

góc H=góc D

=>ΔAIH đồng dạng với ΔAQD

=>AI*AD=AH*AQ

Thu Nguyễn Nguyệt
Xem chi tiết
Hải Anh Bùi
Xem chi tiết
22 - Đỗ Nhật Minh - 6A17
Xem chi tiết
Kiều Vũ Linh
24 tháng 10 2023 lúc 9:28

 

a) Do ABCD là hình vuông (gt)

\(\Rightarrow AB=AD\)

\(\widehat{ABM}=\widehat{ADN}=90^0\)

Xét hai tam giác vuông: \(\Delta ABM\) và \(\Delta ADN\) có:

\(AB=AD\left(cmt\right)\)

\(BM=DN\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta ADN\) (hai cạnh góc vuông)

\(\Rightarrow AM=AN\) (hai cạnh tương ứng)

\(\widehat{BAM}=\widehat{DAN}\) (hai góc tương ứng)

Ta có:

\(\widehat{BAM}+\widehat{DAM}=90^0\)

\(\Rightarrow\widehat{DAN}+\widehat{DAM}=90^0\)

\(\Rightarrow\widehat{MAN}=90^0\)

\(\Delta AMN\) có:

\(AM=AN\left(cmt\right)\)

\(\Rightarrow\Delta AMN\) cân tại A

Mà \(\widehat{MAN}=90^0\left(cmt\right)\)

\(\Rightarrow\Delta AMN\) vuông cân tại A

b) Do \(\Delta AMN\) cân tại A

E là trung điểm của MN

\(\Rightarrow AE\) là đường trung tuyến, cũng là đường cao của \(\Delta AMN\)

\(\Rightarrow AE\perp MN\)

\(\Rightarrow EF\perp MN\)

Xét hai tam giác vuông: \(\Delta FEM\) và \(\Delta FEN\) có:

\(EM=EN\left(gt\right)\)

\(EF\) là cạnh chung

\(\Rightarrow\Delta FEM=\Delta FEN\) (hai cạnh góc vuông)

\(\Rightarrow FM=FN\) (hai cạnh tương ứng)

Xét \(\Delta FAN\) và \(\Delta FAM\) có:

\(FA\) là cạnh chung

\(FN=FM\left(cmt\right)\)

\(AN=AM\left(cmt\right)\)

\(\Rightarrow\Delta FAN=\Delta FAM\left(c-c-c\right)\)

TrịnhAnhKiệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 11 2023 lúc 12:00

a: Xét ΔABM vuông tại B và ΔADN vuông tại D có

AB=AD

BM=DN

Do đó: ΔABM=ΔADN

b: ΔABM=ΔADN

=>AM=AN và \(\widehat{MAB}=\widehat{NAD}\)

\(\widehat{MAB}+\widehat{DAM}=\widehat{BAD}=90^0\)

mà \(\widehat{MAB}=\widehat{NAD}\)

nên \(\widehat{DAM}+\widehat{DAN}=90^0\)

=>\(\widehat{MAN}=90^0\)

Xét ΔAMN có AM=AN và \(\widehat{MAN}=90^0\)

nênΔAMN vuông cân tại A

d: ΔAMN cân tại A

mà AI là đường phân giác

nên I là trung điểm của MN và AI\(\perp\)MN tại I

=>AP\(\perp\)MN tại I

Xét ΔPNM có

PI là đường cao

PI là đường trung tuyến

Do đó: ΔPNM cân tại P

=>PN=PM

=>PM=PD+DN=PD+BM

Nguyễn Khánh Huy
Xem chi tiết
Công Minh Trần
Xem chi tiết
Chi Thảo
Xem chi tiết
Phong Linh
Xem chi tiết
HọcNguNhấtLớp
Xem chi tiết
Cô Hoàng Huyền
15 tháng 12 2017 lúc 17:21

A B C M D

a) Xét tam giác ABM và tam giác DCM có:

AM = DM

BM = CM

\(\widehat{BMA}=\widehat{CMD}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c-g-c\right)\)

b) Do \(\Delta ABM=\Delta DCM\Rightarrow AB=DC;\widehat{BAM}=\widehat{CDM}\)

Chúng lại ở vị trí so le trong nên AB // CD.

HọcNguNhấtLớp
15 tháng 12 2017 lúc 10:05

vẽ Tam giác giúp em luôn nha