Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhuân Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 2 2022 lúc 20:31

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

b: Ta có: ΔABD=ΔACE

nên BD=CE; AD=AE

Xét ΔBCD và ΔCBE có 

BC chung

CD=BE

BD=CE
DO đó: ΔBCD=ΔCBE

c: Xét ΔBHE vuông tại E và ΔCHD vuông tại D có 

BE=CD

\(\widehat{EBH}=\widehat{DCH}\)

Do đó: ΔBHE=ΔCHD

d: Ta có: ΔBHE=ΔCHD

nên HB=HC

Xét ΔABH và ΔACH có 

AB=AC

AH chung

BH=CH

Do đó: ΔABH=ΔACH

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

Do đó: ΔABH=ΔACH

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

hay AH là tia phân giác của góc BAC

Thu Phương
12 tháng 2 2022 lúc 20:32
Xem chi tiết
Đỗ Khánh Linh
1 tháng 5 2020 lúc 20:59

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

Khách vãng lai đã xóa
Đỗ Khánh Linh
1 tháng 5 2020 lúc 21:24

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

Khách vãng lai đã xóa
Đỗ Khánh Linh
1 tháng 5 2020 lúc 21:33

câu 6; 

 Xét \(\Delta ABM\)và \(\Delta ECM\)

BM =MC ( M là trung điểm của BC)

MA =ME

\(\widehat{AMB}=\widehat{CME}\)( đối đỉnh )

=> \(\Delta ABM\)\(\Delta ECM\)(cgc)

=> AB =CE và \(\widehat{MAB}=\widehat{MEC}\)

có AB < AC => CE < AC

Xét \(\Delta CAE\) có CA>CE => \(\widehat{CAE}>\widehat{CEA}\)

có \(\widehat{MAB}=\widehat{CEA}\)=> đpcm

Khách vãng lai đã xóa
Phạm Thùy Trang
Xem chi tiết
gjhduisfh
Xem chi tiết
Akai Haruma
23 tháng 8 2021 lúc 18:18

Lời giải:
a. Xét tam giác $ABD$ và $AED$ có:

$AB=AE$ (gt)

$\widehat{BAD}=\widehat{EAD}$ (tính chất tia phân giác)

$AD$ chung

$\Rightarrow \triangle ABD=\triangle AED$ (c.g.c)

b.

Từ tam giác bằng nhau phần a suy ra $BD=ED$ và $\widehat{ABD}=\widehat{AED}$

$\Rightarrow 180^0-\widehat{ABD}=180^0-\widehat{AED}$

$\Rightarrow \widehat{DBM}=\widehat{DEC}$

Xét tam giác $DBM$ và $DEC$ có:

$\widehat{BDM}=\widehat{EDC}$ (đối đỉnh)

$BD=ED$ (cmt)

$\widehat{DBM}=\widehat{DEC}$ (cmt)

$\Rightarrow \triangle DBM=\triangle DEC$ (g.c.g)

Akai Haruma
23 tháng 8 2021 lúc 18:22

Hình vẽ:

Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 22:50

a: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

b: Ta có: ΔABD=ΔAED

nên \(\widehat{ABD}=\widehat{AED}\)

mà \(\widehat{MBD}=180^0-\widehat{ABD}\)

và \(\widehat{CED}=180^0-\widehat{AED}\)

nên \(\widehat{MBD}=\widehat{CED}\)

Xét ΔMBD và ΔCED có 

\(\widehat{MBD}=\widehat{CED}\)

DB=DE

\(\widehat{BDM}=\widehat{EDC}\)

Do đó: ΔMBD=ΔCED

Nguyễn Ngọc Minh Châu
Xem chi tiết
Nguyễn Thái Sơn
Xem chi tiết
I - Vy Nguyễn
4 tháng 6 2020 lúc 21:02

a ) Ta có : 

+) \(AB< AC\) ( gt )  

 \(\Rightarrow ACB< ABC\) ( quan hệ gữa góc và cạnh đối diện )

+ ) \(ABH+BAH+AHB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABH+60+90=180\)

\(\Rightarrow ABH=30\)

b ) Ta có :\(AD\)là phân giác góc \(A\) ( gt ) 

\(\Rightarrow BAD=CAD=\frac{BAC}{2}=\frac{60}{2}=30\)

Mà \(ABH=30\) ( cmt ) 

\(\Rightarrow ABH=BAD\)

\(\Rightarrow ABH=BAI\)

Xét tam giác \(AIB\) và tam giác \(BHA\) có : 

\(AB\) chung 

\(AIB=BHA=90\)

\(BAI=ABH\)

\(\Rightarrow\) tam giác \(AIB\) \(=\) tam giác \(BHA\) ( g - c - g ) 

c ) Xét tam giác \(ABI\) có : 

\(ABI+BAI+AIB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABI+30+90=180\)

\(\Rightarrow ABI=60\)

\(\Rightarrow ABE=60\)                                 ( 1 ) 

 Xét tam giác \(ABE\) có : 

\(ABE+BAE+AEB=180\)  ( tổng ba góc trong một tam giác )

\(\Rightarrow60+60+AEB=180\)

\(\Rightarrow AEB=60\)                                  ( 2 ) 

Mà \(BAE=60\) ( gt )                         ( 3 )  

Từ ( 1 ) ; ( 2 ) ; ( 3 ) 

\(\Rightarrow\) tam giác \(ABE\) đều 

   
Khách vãng lai đã xóa
Nguyễn Linh Chi
9 tháng 6 2020 lúc 8:58

Chứng minh câu d: 

A B C D H E I 1

Ta có: AE = AB < AC 

=> E thuộc canh AC 

\(\Delta\)ABE đều mà AD vuông BE tại I => AD là đường trung trực của DE => DB = DE  (1)

Dễ chứng minh \(\Delta\)ABD = \(\Delta\)AED 

=> ^ABD = ^AED => ^B1 = ^DEC  ( góc ngoài ) 

mà ^B1 là góc ngoài của \(\Delta\)ABC tại B => ^B> ^C 

=> ^DEC > ^C = ^ECD 

Xét trong \(\Delta\)DEC có: ^DEC > ^ECD => DC > DE (2) 

Từ (1); (2) => DC > DB 

Khách vãng lai đã xóa
Bảo Châm
Xem chi tiết
Ngưu Kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 8 2021 lúc 21:53

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10cm

Áp dụng hệ thức lượng trong tam giác vuông ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB\cdot AC=AH\cdot BC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: 

Áp dụng hệ thức lượng trong tam giác vuông ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông ΔABH vuông tại A có HD là đường cao ứng với cạnh huyền BA, ta được:

\(AD\cdot AB=AH^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(AE\cdot AC=AD\cdot AB\)

hay \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Xét ΔAED vuông tại A và ΔABC vuông tại A có 

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Do đó: ΔAED\(\sim\)ΔABC

Phạm Vũ Hà My
Xem chi tiết
i love Vietnam
12 tháng 11 2021 lúc 16:02

a)Vì M là trung điểm BC (gt)

=> MB = MC

Xét △AMB và △AMC có

AB=AC (gt)

AM : cạnh chung

MB=MC (cmt)

=> △AMB = △AMC (c.c.c)

b) Vì △ABC cân tại A (AB=AC) có AM là trung tuyến

=> AM là đường cao 

=> AM ⊥ BC