Lời giải:
a. Xét tam giác $ABD$ và $AED$ có:
$AB=AE$ (gt)
$\widehat{BAD}=\widehat{EAD}$ (tính chất tia phân giác)
$AD$ chung
$\Rightarrow \triangle ABD=\triangle AED$ (c.g.c)
b.
Từ tam giác bằng nhau phần a suy ra $BD=ED$ và $\widehat{ABD}=\widehat{AED}$
$\Rightarrow 180^0-\widehat{ABD}=180^0-\widehat{AED}$
$\Rightarrow \widehat{DBM}=\widehat{DEC}$
Xét tam giác $DBM$ và $DEC$ có:
$\widehat{BDM}=\widehat{EDC}$ (đối đỉnh)
$BD=ED$ (cmt)
$\widehat{DBM}=\widehat{DEC}$ (cmt)
$\Rightarrow \triangle DBM=\triangle DEC$ (g.c.g)
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
b: Ta có: ΔABD=ΔAED
nên \(\widehat{ABD}=\widehat{AED}\)
mà \(\widehat{MBD}=180^0-\widehat{ABD}\)
và \(\widehat{CED}=180^0-\widehat{AED}\)
nên \(\widehat{MBD}=\widehat{CED}\)
Xét ΔMBD và ΔCED có
\(\widehat{MBD}=\widehat{CED}\)
DB=DE
\(\widehat{BDM}=\widehat{EDC}\)
Do đó: ΔMBD=ΔCED