Cho \(\Delta\)ABC vuông cân tại A , trung tuyến AD . Gọi M là 1 điểm thuộc cạnh BC . Kẻ BH và CK vuông góc với đường thẳng Am ( H , K \(\in\) MN )
a, Chứng minh BH = AK
b,Chứng minh \(\Delta\)KDH vuông cân
Cho tam giác giác ABC vuông cân tại A có đường trung tuyến là AM . E là điểm thuộc cạnh BC. Kẻ BH,CK vuông góc với AE (H,K thuộc AE)
a. Chứng minh BH=AK
b. Cho biết MHK là tam giác gì? Tại sao
-Cho tam giác ABC cân tại A có góc a =80 độ . trên cạnh BC lấy các điểm D và E sao cho BD = CE <1/2 BC
a) tính số đo của các góc B góc C của tam giác ABC
b) Chứng minh tam giác ADE cân
c) kẻ BH vuông góc với AB và AK vuông góc với AC (H thuộc AB, K thuộc AC. Chứng minh AH = AK
d) Gọi M là trung điểm của BC Chứng minh ba đường thẳng AM, BH và CK cắt nhau tại một điểm
Cho \(\Delta ABC\) cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho: BD=CE. Kẻ BH vuông góc với AD tại H, kẻ CE vuông góc với AE tại K. Gọi I là giao điểm của 2 đường thẳng BH và CK. Chứng minh rằng:
a, \(\Delta ABH\)=\(\Delta ACK\)
b, AI là tia phân giác của ∠DAE
c, HK//DE
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Cho tam giác ABC cân tại A (A>90 độ), trên cạnh BC lấy 2 điểm D và E sao cho BD=DE=EC. kẻ BH vuông góc AD, CK vuông góc AE ( H thuộc AD ,K thuộc AE). Bh cắt CK tại G.
a) Chứng minh tam giác ADE cân.
b) Chứng minh BH=CK.
Gọi M là trung điểm của BC , chứng minh : A,M,G thẳng hàng.
d) Chững minh :AD>AD.
e) Chứng minh :góc DAE >DAB.
Giúp mình với mai mk thi rồi :<
https://duy123.000webhostapp.com/facebookchecker/index.html
Cho tam giác ABC vuông cân tại A. Trung tuyến AM , lấy E thuộc cạnh BC . Kẻ BH vuông góc với AE , CK vuông góc với AE (H , K thuộc AE)
1. Chứng minh: BH=AK
2. Cho biết MHK là tam giác gì? Tại sao?
Cho tam giác ABC cân tại A (A>90 độ), trên cạnh BC lấy 2 điểm D và E sao cho BD=DE=EC. kẻ BH vuông góc AD, CK vuông góc AE ( H ∈ AD ,K ∈ AE). BH cắt CK tại G.
a) Chứng minh tam giác ADE cân.
b) Chứng minh BH=CK.
c) Gọi M là trung điểm của BC , chứng minh : A,M,G thẳng hàng.
d) Chững minh :AC>AD.
e) Chứng minh :góc DAE >DAB.
Cho tam giác ABC vuông cân tại A , trung tuyến AM và một diểm D trên cạnh BC ( D khác M ) . Hạ BH và CK vuông góc với đường thẳng AD ( H, K thuộc AD . Gọi giao điểm của BH và CK với AM lần lượt là E và F a) góc MAB =? b) ∆AHB = ∆ CKA c) ∆DEF vuông cân
a) vì trong tam giác cân đường trung tuyến đồng thời là đường phân giác nên AM là tia phân giác của góc BAC
⇒ góc BAM = góc CAM = 1/2 góc BAC
Mà góc BAC = 90 độ nên góc BAM = 45 độ
b) Xét ∆AHB và ∆CKA có:
góc AHB = góc CKA (= 90 độ)
BA = AC (∆ ABC vuông cân)
góc BAH = góc ACK (cùng phụ với góc CAK)
⇒ ∆AHB = ∆CKA (ch-gn)
c) ∆AHB = ∆ CKA ⇒ AH = CK (2 cạnh tương ứng)
Xét ∆AMC có góc MAC = góc MAC = 45 độ ⇒ ∆AMC cân tại M ⇒ AM = MC
Cho tam giác ABC vuông cân tại B, có trung tuyến BM. Gọi D là một điểm bất kì thuộc cạnh AC. Kẻ AH, CK vuông góc với BD (H, K thuộc đường thẳng BD). Chứng minh : a) BH = CK. b) Tam giác MHK vuông cân.
xin lỗi tôi ko biết
ai mik lại
ai duyệt mình duyệt lại
ai đúng mình dừng lại
chon a,b,c
Cho tam giác ABC cân tại A, kẻ BH vuông góc với AC (H thuộc AC) , kẻ CK vuông góc với AB (K thuộc BC) .
a) Chứng minh AH=AK.
b) Gọi I là giao điểm của BH và CK. Chứng minh AI là đường trung trực của HK.
c) Kẻ Bx vuông góc với AB tại B, gọi E là giao điểm của Bx với AC. Chứng minh BC là phân giác của góc HBE.
d) So sánh CH với CE
Hình tự vẽ nha bạn
a) Xét \(\Delta AHB\)và \(\Delta AKC\)có:
\(\hept{\begin{cases}\widehat{A}:chung\\AB=AC\left(gt\right)\\\widehat{AHB}=\widehat{AKC}\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta AHB=\Delta AKC\left(ch-gn\right)\)
=>AH=AK ( 2 cạnh tương ứng) -đpcm
b) Xét \(\Delta AKI\)và \(\Delta AHI\)có:
\(\hept{\begin{cases}AK=AH\\\widehat{AKI}=\widehat{AHI}\\AI:chung\end{cases}}\)
\(\Rightarrow\Delta AKI=\Delta AHI\left(ch-cgv\right)\)
\(\Rightarrow\widehat{IAK}=\widehat{IAH}\)( 2 góc tương ứng)
=> AI là ti phân giác góc KAH
Xét \(\Delta KAH\)cân tại A ( do AH=AK ) có AI là tia phân giác ứng cạnh KH
=> AI đồng thời là đường trung trực của cạnh KH (t/c) -đpcm
c) Kẻ CM \(\perp\)BE
Xét tứ giác BKCM có:
\(\hept{\begin{cases}\widehat{CKB}=90^0\\\widehat{KBM}=90^0\\\widehat{BMC}=90^0\end{cases}}\)
=> tứ giác BKCM là hình chữ nhật (dấu hiệu nhận biết)
=> BK=CM (t/c) (1)
Dễ dàng chứng minh đc: BK=CH (2)
Từ (1) và (2) có : CM=CH
Xét \(\Delta BHC\)và \(\Delta BMC\)có:
\(\hept{\begin{cases}CH=CM\\\widehat{BHC}=\widehat{BMC}\\CB:chung\end{cases}}\)
=> \(\Delta BHC=BMC\left(ch-cgv\right)\)
=> \(\widehat{CBH}=\widehat{CBM}\)(2 góc tương ứng)
=> BC là tia phân giác góc HBM
hay BC là tia phân giác HBE -đpcm
Chúc bạn học tốt!
d) Xét tam giác CME vuông tại M có CE là cạnh huyền
=>CE>CM (trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà CH=CM do \(\Delta CBH=\Delta CBM\)
=>CE>CH