Cho \(n\in Z^+;n>1\)
Đặt \(P=\left(1-\dfrac{1}{1+2}\right)\left(1-\dfrac{1}{1+2+3}\right)....\left(1-\dfrac{1}{1+2+...+n}\right)\)
Tìm n để \(\dfrac{1}{P\left(n\right)}\in N\)
Các phát biểu sau đúng hay sai? Nếu sai hãy phát biểu lại cho đúng.
a) \( - 4 \in \mathbb{Z}\) b) \(5 \in \mathbb{Z}\) c) \(0 \in \mathbb{Z}\)
d) \( - 8 \in \mathbb{N}\) e) \(6 \in \mathbb{N}\) g) \(0 \in \mathbb{N}\)
Phát biểu a : Đúng, vì \( - 4\) là số nguyên âm nên nó là số nguyên.
Phát biểu b: Đúng, vì 5 là số nguyên dương nên nó là số nguyên.
Phát biểu c: Đúng, vì 0 là số nguyên.
Phát biểu d: Sai, vì \( - 8\) là số nguyên âm, không phải là số tự nhiên.
Phát biểu e: Đúng, vì 6 là số tự nhiên.
Phát biểu f: Đúng, vì 0 là số tự nhiên.
Các mệnh đề sau đúng hay sai ? Hãy giải thích điều đó
c) "$\exists k\in Z;(k^{2}-k cộng 1) là số chẵn $"
d)"$\forall x\in Z;\frac{2x³-6x² cộng x-3}{2x² cộng 1}\in Z$"
e)"$\exists x\in Z;\frac{x²-2x cộng 3}{x-1}\in Z$"
d)"$\forall x\in R;x<3\Rightarrow x²<9$"
e)"$\forall n\in N;(n²-n)chia hết cho 3$"
g)"$\forall x\in R;\frac{x²}{2x²+1}<\frac{1}{2}$"
f)"$\forall n\in N;(n²-n) chia hết cho 24$"
c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)
Tìm n \(\in\)N sao cho
\(\frac{n^2+3n}{n-1}\in N\)
Tìm n \(\in Z\)sao cho
\(\frac{n-8}{n^2+1}\in Z\)
Đọc những điều ghi sau đây và cho biết điều đó có đúng không ?
\(-2\in\mathbb{N},6\in\mathbb{N},0\in\mathbb{N},0\in\mathbb{Z},-1\in\mathbb{N},-1\in\mathbb{Z}\)
\(-2\in N\rightarrow Sai:\) . -2 không thuộc Z
\(6\in N\rightarrow\) Đúng
\(0\in N\rightarrow\) Đúng
\(0\in Z\rightarrow\) Đúng
\(-1\in N\rightarrow Sai\) . -1 không thuộc N
\(-1\in Z\rightarrow\) Đúng
\(-2\in N\rightarrow Sai\) \(\left(-2\notin N\right)\)
\(6\in N\rightarrowĐúng\)
\(0\in N\rightarrowĐúng\)
\(0\in Z\rightarrowĐúng\)
\(-1\in N\rightarrow Sai\) \(\left(-1\notin N\right)\)
\(-1\in Z\rightarrowĐúng\)
−2∈N→Sai:−2∈N→Sai: . -2 không thuộc Z
6∈N→6∈N→ Đúng
0∈N→0∈N→ Đúng
0∈Z→0∈Z→ Đúng
−1∈N→Sai−1∈N→Sai . -1 không thuộc N
−1∈Z→−1∈Z→ Đúng
cho A={n \(\in\) Z,n=2k,k\(\in\) Z}
B là tập hợp các số nguyên có chữ số tận cùng là 0,2,4,6,8
C={n \(\in\) Z,n=2k-2,k\(\in\) Z}
D={n \(\in\) Z,n=3k-1,k\(\in\) Z}
cm A=B,A=C,A\(\ne\) D
Vì B là tập các số nguyên có tận cùng là 0;2;4;6;8
nên B là tập các số chẵn
=>A=B
Vì 2k-2=2(k-1) chia hết cho 2
nên C là tập các số chẵn
=>A=C
Tìm \(n\in N\) sao cho C=\(\sqrt{n+2}+\sqrt{n+\sqrt{n+2}}\) \(\in Z\)
Cho A=\(\dfrac{n+2}{n-5}\left(n\in z;n\ne5\right)\) Tìm n để A ϵ Z
Ta có : \(A=\dfrac{n+2}{n-5}\)
\(\Rightarrow A=\dfrac{n-5+7}{n-5}=\dfrac{n-5}{n-5}+\dfrac{7}{n-5}\)
\(\Rightarrow A=1+\dfrac{7}{n-5}\)
Để \(A\in Z\Leftrightarrow\dfrac{7}{n-5}\in Z\)
\(\Leftrightarrow\left(n-5\right)\inƯ\left(7\right)\)
mà \(Ư\left(7\right)=\left(\pm1;\pm7\right)\)
\(\Rightarrow n\in\left(6;4;12;-2\right)\)
\(Vậy...\)
Cho hàm số f: \(Z^+\rightarrow Z^+\) thỏa mãn đồng thời các điều kiện :
1) \(f\left(n+1\right)>f\left(n\right)\) với \(\forall n\in Z^+\)
2) \(f\left(f\left(n\right)\right)=n+2000\) với \(\forall n\in Z^+\)
a) Chứng minh: \(f\left(n+1\right)=f\left(n\right)+1\)
b) Tính \(f\left(n\right)\)
Cho hàm số f: \(Z^+\rightarrow Z^+\) thỏa mãn đồng thời các điều kiện :
1) \(f\left(n+1\right)>f\left(n\right)\) với \(\forall n\in Z\)
2) \(f\left(f\left(n\right)\right)=n+2000\) với \(\forall n\in Z\)
a) Chứng minh: \(f\left(n+1\right)=f\left(n\right)+1\)
b) Tính \(f\left(n\right)\)
Cho x;y;z;t \(\in N\circledast\)
Cm \(\dfrac{x}{x+y+z}+\dfrac{y}{y+z+t}+\dfrac{z}{z+t+x}+\dfrac{t}{t+x+y}\in N\)
(A=dfrac{x}{x+y+z}+dfrac{y}{y+z+t}+dfrac{z}{z+t+x}+dfrac{t}{t+x+y})
Giả sử: (Ain N) thì
(left{{}egin{matrix}dfrac{x}{x+y+z}in N\dfrac{y}{y+z+t}in N\dfrac{z}{z+t+x}in N\dfrac{t}{x+y+t}in Nend{matrix} ight.) (Leftrightarrowleft{{}egin{matrix}x⋮x+y+z\y⋮y+z+t\z⋮z+t+x\t⋮t+x+yend{matrix} ight.)
Vì (x;y;z;tin Ncircledast) nên
(left{{}egin{matrix}xge x+y+z\yge y+z+t\zge z+t+x\tge t+x+yend{matrix} ight.Leftrightarrowleft{{}egin{matrix}x+yle0\z+tle0\t+xle0\x+yle0end{matrix} ight.)
Điều trên ko thể xảy ra, (A otin N)