Cho hàm số f: \(Z^+\rightarrow Z^+\) thỏa mãn đồng thời các điều kiện :
1) \(f\left(n+1\right)>f\left(n\right)\) với \(\forall n\in Z^+\)
2) \(f\left(f\left(n\right)\right)=n+2000\) với \(\forall n\in Z^+\)
a) Chứng minh: \(f\left(n+1\right)=f\left(n\right)+1\)
b) Tính \(f\left(n\right)\)
Cho hàm số f: R\(\rightarrow\)R , \(n\ge2\) là số nguyên . CMR: nếu
\(\dfrac{f\left(x\right)+f\left(y\right)}{2}\ge f\left(\dfrac{x+y}{2}\right)\forall x,y\ge0\) (1) thì ta có :
\(\dfrac{f\left(x_1\right)+f\left(x_2\right)+....+f\left(x_n\right)}{n}\ge f\left(\dfrac{x_1+x_2+...+x_n}{n}\right)\) \(\forall x\ge0,i=\overline{l,n}\)
Cho hàm số \(f:R\rightarrow R\) thỏa mãn \(f\left(f\left(x\right)+y\right)=2x+f\left(f\left(x\right)-y\right)\)
a. Chứng minh f là toàn ánh
b. Tìm f(x)
Trong các dãy số sau, dãy số nào bị chặn?
A. Dãy \(\left(a_n\right)\), với \(a_n=\sqrt{n^3+n},\forall n\in N^*\).
B. Dãy \(\left(b_n\right)\), với \(b_n=n^2+\dfrac{1}{2n},\forall n\in N^*\).
C. Dãy \(\left(c_n\right)\), với \(c_n=\left(-2\right)^n+3,\forall n\in N^*\).
D. Dãy \(\left(d_n\right)\), với \(d_n=\dfrac{3n}{n^3+2},\forall n\in N^*\).
Nếu được thì giải thích chi tiết từng đáp án giúp mình với ạ, mình cảm ơn!
Cho dãy số thực \(\left(u_n\right)\)xác định bởi: \(\left\{{}\begin{matrix}u_1=\sin1\\u_n=u_{n-1}+\dfrac{\sin n}{n^2},\forall n\in N,n\ge2\end{matrix}\right.\)
Chứng minh rằng dãy số xác định như trên là một dãy số bị chăn
Cho \(\left(v_n\right)\left\{{}\begin{matrix}v_1=\dfrac{1}{2018}\\v_{n+1}=\dfrac{2v_n}{1+2018v_n^2},\forall n\in N^{\cdot}\end{matrix}\right.\)
CMR: \(v_{n+1}\ge v_n\)
\(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)....\left(1-\dfrac{1}{n}\right)\)Với n thuộc \(Z^+\)
cho dãy số sau:
Hãy cho biết phần tử F(1395) có chữ số tận cùng là số mấy ?
Cho dãy số \(\left(u_n\right)\) xác định bởi: \(\left\{{}\begin{matrix}u_1=1;u_2=2\\u_{n+1}=\dfrac{u_n^2}{u_{n-1}}\end{matrix}\right.\) với \(n\ge2\)
a, Chứng minh dãy số \(\left(v_n\right):v_n=\dfrac{u_n}{u_{n-1}}\) là dãy số không đổi
b,Tìm công thức tổng quát của dãy số \(\left(u_n\right)\)