Tìm n ϵ Z :
a. 3n + 2 ⋮ 4 - n
b. n2 + n + 2 ⋮ n - 1
Chứng minh rằng
a) A = n(3n-1) - 3n(n-2) ⋮ 5 (∀n ϵ R)
b) B = n(n+5) - (n-3)(n+2) ⋮ 6 (∀n ∈ Z)
c) C= (n2 + 3n - 1)(n+2) - n3+2 ⋮ 5 (∀n ϵ Z)
a: A=3n^2-n-3n^2+6n=5n chia hết cho 5
b: B=n^2+5n-n^2+n+6=6n+6=6(n+1) chia hết cho 6
c: =n^3+2n^2+3n^2+6n-n-2-n^3+2
=5n^2+5n
=5(n^2+n) chia hết cho 5
Tìm n ϵ N
n2+3n+1\(⋮\)n-1
=>n^2-n+4n-4+5 chia hết cho n-1
=>\(n-1\in\left\{1;-1;5;-5\right\}\)
mà n>=0
nên \(n\in\left\{2;0;6\right\}\)
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
1. Tìm n ϵ Z, biết :
a, n2 - 2n + 3 ⋮ n + 4
b, 3n2 + n + 16 ⋮ n + 5n
c, n3 + n - 5n - 2 ⋮ n + 3
d, n + 4 ⋮ 3 - n
e, 2n + 1 ⋮ 5 - n
Giúp mình với thứ 7 mình phải nộp rồi ạ !
Viết lời giải ra giúp mình nhé !
a) Cho a,b,c ϵ Z. CMR:a3 + b3 + c3 ⋮ 6⇔a +b +c ⋮ 6
b) CM: n2 + n2⋮12 ∀n ϵ Z
c) CM:n(n+2)(25n2-1)⋮24 ∀ n ϵZ
LÀM ƠN NHANH HỘ MK VỚIIIIIIIIIIIIIIIIIIII
a) Cho a,b,c ϵ Z. CMR:a3 + b3 + c3 ⋮ 6⇔a +b +c ⋮ 6
b) CM: n2 + n2⋮12 ∀n ϵ Z
c) CM:n(n+2)(25n2-1)⋮24 ∀ n ϵZ
LÀM ƠN NHANH HỘ MK VỚIIIIIIIIIIIIIIIIIIII
Bài 1
a) Cho C=\(\frac{n}{n-2}\) ( n ϵ Z ; n khác 2)
Tìm tất cả các số nguyên n để C là số nguyên
b) Cho D\(\frac{n}{n+13}\) ( n ϵ Z ; n khác -13) ( và cũng hỏi như ở câu a)
Bài 2
a) Cho E = \(\frac{3n+5}{n+7}\) ( n ϵ Z ; n khác -7) Tìm n ϵ Z để E là số nguyên
b) Cho F = \(\frac{2n+9}{n-5}\) ( n ϵ Z ; n khác 5) Tìm n ϵ Z để F là số nguyên
Bài 3
a) Cho G = \(\frac{n+10}{2n-8}\) ( n khác 4) Tìm số tự nhiên n để G là số nguyên
b) Cho H = \(\frac{n-1}{3n-6}\) ( n khác 2) Tìm n ϵ Z để H là số nguyên
Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)
Viết
a , A = { n ∈ N✽ | 3 < n2 < 30 }
b , B = { n ∈ Z | |n| < 3 }
c , C = { x|x = 3k va k ∈ Z va -4 < x < 12 }
d , D = { n2 + 3|n ϵ N va n < 5 }
a: \(3< n^2< 30\)
=>\(\sqrt{3}< n< \sqrt{30}\)
mà \(n\in Z^+\)
nên \(n\in\left\{2;3;4;5\right\}\)
=>A={2;3;4;5}
b: |n|<3
=>-3<n<3
mà \(n\in Z\)
nên \(n\in\left\{-2;-1;0;1;2\right\}\)
=>B={-2;-1;0;1;2}
c: x=3k
=>\(x⋮3\)
mà -4<x<12
nên \(x\in\left\{-3;0;3;6;9\right\}\)
=>C={-3;0;3;6;9}
d: \(n\in N\)
mà n<5
nên \(n\in\left\{0;1;2;3;4\right\}\)
=>\(n^2+3\in\left\{3;4;7;12;19\right\}\)
=>D={3;4;7;12;19}
Cho phân số: D = n2+3n-21/2-n với n Z a) Tính D biết n2 – 3n = 0 b) Tìm tất cả các giá trị của n để D nhận giá trị nguyên.