\(3n+2=3n-12+14=\left(-3\right)\left(4-n\right)+14\\ \left(-3\right)\left(4-n\right)⋮4-n\\ \text{Để }3n+2⋮4-n\Rightarrow14⋮4-n\Rightarrow4-n\inƯ\left(14\right)=\left\{-14;-7;-2;-1;1;2;7;14\right\}\)
$ 4 - n $ | $ n $ |
$ - 14 $ | $ 18 $ |
$ - 7 $ | $ 11 $ |
$ - 2 $ | $ 6 $ |
$ - 1 $ | $ 5 $ |
$ 1 $ | $ 3 $ |
$ 2 $ | $ 2 $ |
$ 7 $ | $ - 3 $ |
$ 14 $ | $ - 10 $ |
Vậy \(n\in\left\{-10;-3;2;3;5;6;11;18\right\}\)
\(n^2+n+2=n^2-1+n-1+4=\left(n+1\right)\left(n-1\right)+\left(n-1\right)+4=\left(n-1\right)\left(n+2\right)+4\\ \left(n-1\right)\left(n+2\right)⋮n-1\\ \text{Để }n^2+n+2⋮n-1\Rightarrow4⋮n-1\Rightarrow n-1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
$ n - 1 $ | $ n $ |
$ - 4 $ | $ - 3 $ |
$ - 2 $ | $ - 1 $ |
$ - 1 $ | $ 0 $ |
$ 1 $ | $ 2 $ |
$ 2 $ | $ 3 $ |
$ 4 $ | $ 5 $ |
Vậy \(n\in\left\{-3;-1;0;2;3;5\right\}\)