tìm min
a)a=x^2-7x+11
b)a=9x^2+6x+11
Tìm GTNN của các biểu thức sau:
a,A= x^2+6x+11
b,B= x^2+3x-5
c,C= 9x^2-12x+2021
\(A=\left(x+3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=-3\\ B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{29}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{29}{4}\ge-\dfrac{29}{4}\\ B_{min}=-\dfrac{29}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ C=\left(9x^2-12x+4\right)+2017=\left(3x-2\right)^2+2017\ge2017\\ C_{min}=2017\Leftrightarrow x=\dfrac{2}{3}\)
tìm gtnn của
A=9x^2-6x+2
B=x^2-7x+11
C=x^2+x+5
D=(x-1)(x+2)+1
\(A=9x^2-6x+2=\left(9x^2-6x+1\right)+1\)
\(=\left(3x-1\right)^2+1\)
Với mọi giá trị của x , ta có:
\(\left(3x-1\right)^2\ge1\Rightarrow\left(3x-1\right)^2+1\ge1\)
Vậy \(Min_A=1\)
Để A = 1 thì \(3x-1=0\Rightarrow3x=1\Rightarrow x=\frac{1}{3}\)
\(B=x^2-7x+11=\left(x^2-7x+\frac{49}{4}\right)-\frac{5}{4}\)
\(=\left(x-\frac{7}{2}\right)^2-\frac{5}{4}\)
Với moị giá trị của x , ta có:
\(\left(x-\frac{7}{2}\right)^2\ge0\Rightarrow\left(x-\frac{7}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Vậy \(Min_B=-\frac{5}{4}\)
Để B = \(-\frac{5}{4}\) thì \(x-\frac{7}{2}=0\Rightarrow x=\frac{7}{2}\)
\(C=x^2+x+5=\left(x^2+x+\frac{1}{4}\right)+\frac{19}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{19}{4}\)
Với mọi giá trị của x thì :
\(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\)
Vậy : \(Min_C=\frac{19}{4}\)
Để \(C=\frac{19}{4}\) thì \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
\(D=\left(x-1\right)\left(x+2\right)+1=x^2+x-2+1\)
\(=x^2+x-1=\left(x^2+x+\frac{1}{4}\right)-\frac{5}{4}\)
\(=\left(x+\frac{1}{2}\right)^2-\frac{5}{4}\)
Với mọi giá trị của x . ta có:
\(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Vậy \(Min_D=-\frac{5}{4}\)
Để \(D=-\frac{5}{4}\) thì \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
tìm x
a) x^3-9x+7x^2-63=0
b) x^3-6x^2+9x=0
\(x^3-9x+7x^2-63=0\)
\(\Rightarrow\left(x^3+7x^2\right)-9x-63=0\)
\(\Rightarrow x^2\left(x+7\right)-9\left(x+7\right)=0\)
\(\Rightarrow\left(x^2-9\right)\left(x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-9=0\\x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=9\\x=-7\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm3\\x=-7\end{cases}}}\)
Vậy ...
x3−9x+7x2−63=0x3−9x+7x2−63=0
⇒(x3+7x2)−9x−63=0⇒(x3+7x2)−9x−63=0
⇒x2(x+7)−9(x+7)=0⇒x2(x+7)−9(x+7)=0
⇒(x2−9)(x+7)=0⇒(x2−9)(x+7)=0
⇒{x2−9=0x+7=0⇒{x2=9x=−7⇒{x=±3x=−7⇒{x2−9=0x+7=0⇒{x2=9x=−7⇒{x=±3x=−7
Vậy ...
Tìm GTNN của biểu thức
A= x\(^2\)-6x+11
B= x\(^2\)-20x+101
C= x\(^2\)-16x+11
a: A=x^2-6x+9+2=(x-3)^2+2>=2
Dấu = xảy ra khi x=3
b: B=x^2-20x+100+1=(x-10)^2+1>=1
Dấu = xảy ra khi x=10
d: C=x^2-16x+8+3
=(x-4)^2+3>=3
Dấu = xảy ra khi x=4
Tìm x :
a) 9x^2 -6x+3 = 0
B) x^2 - 7x +12 = 0
C) x^2 -8x +6 =0
a) \(9x^2-6x+3=0\)
\(\Leftrightarrow\left(3x\right)^2-2.3x.1+1^2+2=0\)
\(\Leftrightarrow\left(3x-1\right)^2=-2\) ( vô lí )
b) \(x^2-7x+12=0\)
\(\Leftrightarrow x^2-2.x.\frac{7}{2}+\left(\frac{7}{2}\right)^2-\frac{1}{4}=0\)
\(\Leftrightarrow\left(x-\frac{7}{2}\right)^2=\frac{1}{4}=\left(-\frac{1}{2}\right)^2=\left(\frac{1}{2}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{7}{2}=\frac{1}{2}\\x-\frac{7}{2}=-\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=3\end{cases}}\)
Vậy : \(x\in\left\{3,4\right\}\)
c) \(x^2-8x+6=0\)
\(\Leftrightarrow x^2-2.x.4+4^2-10=0\)
\(\Leftrightarrow\left(x-4\right)^2=10\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=\sqrt{10}\\x-4=-\sqrt{10}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{10}+4\\x=-\sqrt{10}+4\end{cases}}\)
bai1 :tinh
a)(x^3-5x^2+8x-4):(x-2)
b)(x^3-9x^2+6x+10):(x+1)
c)(x^3-7x+6):(x+3)
bài 2:tìm a sao cho đa thức:x^4-x^3+6x^2-x+a chia hết cho dã thú x^2-x+5
bai3:choA=x^4-2x^3+x^2+13x-11
B=x^2-2x+3
tìm thương và số dư R sao cho A=B.Q+R
\(a.\frac{x^3-6x^2+12x-8+x^2-4x+4}{x-2}\)\(=\frac{\left(x-2\right)^3+\left(x-2\right)^2}{x-2}\)\(=2\left(x-2\right)^2\)
CHO A(X)=5X^4- 3 +2X^2- 6X+ 7X^2-X^4
B(X)=-9X^2 + X-3-4X^4+5X^3
A) THU GỌN A(X),TÌM BẬC , SẮP XẾP THEO LŨY THỪA GIẢM
B)N(X)= A(X) +B(X); M(X)= A(X)- B(X)
C) TÌM NGHIỆM N(X)
a)
A(x)= 5x^4 - 3 + 2x^2 - 6x + 7x^2 - x^4
A(x)= 4x^4 + 9x^2 - 6x - 3.
Bậc: 4.
B= -9x^2 + x - 3 - 4x^4 + 5x^3
B(x)= -4x^4 + 5x^3 - 9x^2 + x - 3
b)
N(x) = A(x) + B(x)= ( 4x^4 + 9x^2 - 6x - 3 ) + (-4x^4 + 5x^3 - 9x^2 + x - 3)
N(x)= 5x^3 - 5x - 6
M(x) = A(x) - B(x)= ( 4x^4 + 9x^2 - 6x - 3 ) -
(-4x^4 + 5x^3 - 9x^2 + x - 3)
M(x)= 8x^4 - 5x^3 + 18x^2 - 7x.
Bài 1 : chứng minh rằng các biểu thức sau đây không phụ thuộc vào x a,A=(3x+7)(2x+3)-(2x+3)-(3x-5)(2x+11) b,B=(x^2-2)(x^2+x-1)-x(x^3+x^2-3x-2) Bài 2:Tìm x biết: a,6x(5x+3)+3x(1-10x)=7 b,(3x-3)(5-21x)+(7x+4)(9x-5)=44 c,(x+1)(x+2)(x+5)-x^2(x+8)=27 d,(2x-1)(3-x)+(x-2)(x+3)=(1-x)(x+2) Bài 3 Tính a,(2x+3)^3 b,(x-3y)^3 c.(x+4)(x^2-4x+16) d,(1/3x+2y)(1/9x^2-2/3xy+4y) e,(x-3y)(x2+3xy+9y^2)
\(1,A=\left(3x+7\right)\left(2x+3\right)-\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\\ =6x^2+23x+21-2x-3-6x^2-23x+55\\ =73-2x\left(đề.sai\right)\\ B=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x\\ =2\\ 2,\\ a,\Leftrightarrow30x^2+18x+3x-30x^2=7\\ \Leftrightarrow21x=7\Leftrightarrow x=\dfrac{1}{3}\\ b,\Leftrightarrow-63x^2+78x-15+63x^2+x-20=44\\ \Leftrightarrow79x=79\Leftrightarrow x=1\\ c,\Leftrightarrow\left(x+5\right)\left(x^2+3x+2\right)-x^3-8x^2=27\\ \Leftrightarrow x^3+3x^2+2x+5x^2+15x+10-x^3-8x^2=27\\ \Leftrightarrow17x=17\Leftrightarrow x=1\)
\(d,\Leftrightarrow7x-2x^2-3+x^2+x-6=-x^2-x+2\\ \Leftrightarrow9x=11\Leftrightarrow x=\dfrac{11}{9}\)
Tìm nghiệm của các đa thức sau:
1. f(x) = 4x2 - 4x + 1
2. f(x) = 9x2 + 6x + 1
Mina ơi, giúp Shino vs ak! Shino cảm tạ nhìu lém >.< Iu mina nhìu nhìu <3
Mina giúp Shino đây nè:3(lần lượt nhá)
Ta có:\(4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot1+1^2=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
1/ f(x) = 4x2 - 4x + 1
4x2 - 4x + 1 = 0
=> 4x2 + 2x + 2x + 1 = 0
=> 2x(2x + 1) + (2x + 1) = 0
=> (2x + 1)(2x + 1) = 0
=> (2x + 1)2 = 0
=> 2x + 1 = 0
=> 2x = -1
=> x = -1/2
Vậy nghiệm của đa thức f(x) là x = -1/2
\(9x^2+6x+1=0\)
\(\Leftrightarrow\left(3x\right)^2+2\cdot3x\cdot1+1^2=0\)
\(\Leftrightarrow\left(3x+1\right)^2=0\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Áp dụng 2 hằng đẳng thức:
\(a^2+2ab+b^2=\left(a+b\right)^2\)
\(a^2-2ab+b^2=\left(a-b\right)^2\)