cho tam giác abc cân taị a trên cạnh ab ,ac lay diem d,e sao cho ad=ae
CM de song song bc
Cho tam giác ABC cân tại A.. Trên cạnh AB lấy điểm D. trên cạnh AC lấy điểm E sao cho AD = AE .Goi M la trung diem cua BC cm DE=BC
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
Cho tam giác ABC cân tại A . Vẽ AM vuông góc với BC ( M thuộc BC )
a) Chứng minh tam giác ABM = tam giác ACM
b) trên cạnh AB lấy điểm D , trên cạnh AC lấy điểm E sao cho AD = AE . Chứng minh tam giác ABE = tam giác ACD và DE song song với BC
c) Gọi I là giao điểm của BE và CD . Chứng minh AI là tia phân giác của góc BAC
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
c: Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
=>\(\widehat{DCB}=\widehat{EBC}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC
bai 2: cho tam giac ABC co goc A=90 do.Goi M la trung diem cua AC.tren tia BM lay diem N sao cho M la trung diem cua doan BN.CMR:a,CN vuong goc AC va CN=AB b,AN=BC va AN song song BC
bai 3:cho tam giac ABC co goc A=90 do va AB nho hon AC.tren canh AC lay diem D sao cho AD=AB.tren tia doi cua tia AB lay diem E sao cho AE=AC.CMR:a)DE song song BC b)DE vuong goc BC c)biet 4.B=5.C.tinh goc AED
Bài 2:
a) Xét 2 \(\Delta\) \(ABM\) và \(CNM\) có:
\(AM=CM\) (vì M là trung điểm của \(AC\))
\(\widehat{AMB}=\widehat{CMN}\) (vì 2 góc đối đỉnh)
\(BM=NM\) (vì M là trung điểm của \(BN\))
=> \(\Delta ABM=\Delta CNM\left(c-g-c\right).\)
=> \(AB=CN\) (2 cạnh tương ứng)
=> \(\widehat{BAM}=\widehat{NCM}\) (2 góc tương ứng)
Ta có: \(\widehat{BAM}+\widehat{NCM}=180^0\) (vì 2 góc kề bù)
Mà \(\widehat{BAM}=90^0\left(gt\right)\)
=> \(90^0+\widehat{NCM}=180^0\)
=> \(\widehat{NCM}=180^0-90^0\)
=> \(\widehat{NCM}=90^0.\)
=> \(\widehat{BAM}=\widehat{NCM}=90^0\)
=> \(CN\perp AB.\)
b) Xét 2 \(\Delta\) \(AMN\) và \(CMB\) có:
\(AM=CM\) (như ở trên)
\(\widehat{AMN}=\widehat{CMB}\) (vì 2 góc đối đỉnh)
\(MN=MB\) (như ở trên)
=> \(\Delta AMN=\Delta CMB\left(c-g-c\right)\)
=> \(AN=BC\) (2 cạnh tương ứng)
=> \(\widehat{ANM}=\widehat{CBM}\) (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AN\) // \(BC.\)
Chúc bạn học tốt!
Cho tam giác ABC cân tại A ,trên cạnh AB, AC lấy D và E sao cho AD = CE = BC. Biết rằng tam giác ADE cân và DE không song song với BC. Tính góc A
cho tam giác ABC cân tại A . trên các cạnh AB và AC lấy D và E sao cho AD=AE gọi M là trung điểm BC chứng minh
a DE song song BC
b Tinh goc BAE
Cho tam giác ABC cân tại A ,trên cạnh AB, AC lấy D và E sao cho AD = CE = BC. Biết rằng tam giác ADE cân và DE không song song với BC. Tính góc A.
Cho tam giác ABC có AB=4cm. Điểm D trên cạnh AB sao cho AD=3cm. Lấy điểm E trên cạnh AC sao cho DE song song BC. Giả sử AE+AC=14cm. Tính tỉ số giữa AE và AC rồi tính độ dài AE, EC, AC.
Cho tam giác ABC có góc A vuông, cạnh AB = 40 cm, cạnh AC = 60 cm, trên cạnh AB lấy đểm D sao cho AD = 10 cm, trên cạnh BC lấy điểm E, nối D với E (đoạn thẳng DE song song với AC) , ta được hình thang ADEC. Tính diện tích tam giác BED.
Bài 1: Cho tam giác ABC có góc B=50 độ. Từ đỉnh A kẻ đường thẳng song song với BC cắt tia phân giác của góc B ở E.
a/ CM: Tam giác ABC cân.
b/ Tính góc BAE.
Bài 2: Cho tam giác cân ABC (AB=AC). Trên các cạnh AB và AC lấy tương ứng 2 điểm D và E sao cho AD=AE. Gọi M là trung điểm của BC. CMR:
a/ DE song song BC
b/ Tam giác MBD=tam giác MCE
c/ Tam giác AMD=tam giác AME
mk k vẽ hình nữa nha bn!!!
Bài 1:
a/ Xét ΔABC và ΔACE có:
\(\widehat{BAC}=\widehat{ECA}\) (so le trong do AE // BC)
AC: Cạnh chung
\(\widehat{BCA}=\widehat{EAC}\) (so le trong do AE // BC)
=> ΔABC = ΔACE(g.c.g)
=> AB = AC(2 góc tương ứng)
=> ΔABC cân tại A (đpcm)
b/ Vì ΔABC cân tại A(ý a)
=> \(\widehat{ABC}=\widehat{ACB}\) = 50o
=> \(\widehat{BAC}=180^o-\widehat{B}-\widehat{C}=180^o-50^o-50^o=80^o\) (1)
Có: \(\widehat{ACB}=\widehat{EAC}\) = 50o (so le trong do AE // BC) (2)
Từ(1) và(2)
=>\(\widehat{BAE}=\widehat{BAC}+\widehat{EAC}\) (2 góc kề nhau)
= 80o + 50o = 130o
Bài 1:
a/ Xét ΔABC và ΔACE có:
BACˆ=ECAˆBAC^=ECA^ (so le trong do AE // BC)
AC: Cạnh chung
BCAˆ=EACˆBCA^=EAC^ (so le trong do AE // BC)
=> ΔABC = ΔACE(g.c.g)
=> AB = AC(2 góc tương ứng)
=> ΔABC cân tại A (đpcm)
b/ Vì ΔABC cân tại A(ý a)
=> ABCˆ=ACBˆABC^=ACB^ = 50o
=> BACˆ=180o−Bˆ−Cˆ=180o−50o−50o=80oBAC^=180o−B^−C^=180o−50o−50o=80o (1)
Có: ACBˆ=EACˆACB^=EAC^ = 50o (so le trong do AE // BC) (2)
Từ(1) và(2)
=>BAEˆ=BACˆ+EACˆBAE^=BAC^+EAC^ (2 góc kề nhau)
= 80o + 50o = 130o