Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồ Minh Phi
Xem chi tiết
Nguyễn Tất Đạt
15 tháng 10 2018 lúc 12:01

A B C D 1 2 1

Trong \(\Delta\)ABC có: ^A = ^B +2.^C => ^A > ^B và ^A > ^C => BC là cạnh lớn nhất trong tam giác ABC.

+) Xét trường hợp: AB < AC < BC. Khi đó; ta đặt: AB = a; AC = a+1; BC = a+2 (Với a thuộc N*)

Trên cạnh BC lấy điểm D sao cho ^BAD = ^ACB, hay ^A1 = ^C (theo hình vẽ)

Xét \(\Delta\)ABC và \(\Delta\)DBA có: ^A1 = ^C; ^B chung => \(\Delta\)ABC ~ \(\Delta\)DBA (g.g)

=> \(\frac{AB}{DB}=\frac{BC}{BA}\)=> AB2 = BC.BD hay a2 = (a+2).BD  (*)

Ta thấy: ^BAC = ^B + 2.^C; ^BAC = ^A1 + ^A2 = ^C + ^A2 => ^B + 2.^C = ^C + A2 <=> ^B + ^C = ^A2  (1)

Do ^D1 là góc ngoài \(\Delta\)BAD nên ^D1 = ^A1 + ^B = ^B + ^C (Vì ^C = ^A1) (2)

Từ (1) và (2) => ^D1 = ^A2 => \(\Delta\)ACD cân tại C => AC= CD = a+1 => BD = BC - CD = BC - AC = a+2 - a - 1 = 1

Thay BD = 1 vào (*) ta có: 

\(a^2=\left(a+2\right).1\Leftrightarrow a^2-a-2=0\Leftrightarrow a^2+a-2a-2=0\)

\(\Leftrightarrow a\left(a+1\right)-2\left(a+1\right)=0\Leftrightarrow\left(a+1\right)\left(a-2\right)=0\Leftrightarrow\orbr{\begin{cases}a=-1\\a=2\end{cases}}\)

=> a = 2. (Loại TH a = -1 vì a thuộc N*) => a+1 = 3; a+2 = 4

Hay AB = 2; AC = 3; BC = 4

+) Xét trường hợp AC < AB < BC. Đặt AC = a; AB = a+1; BC = a+2

Chứng ming tương tự TH 1; ta có: AB2 = BC.BD; BD = BC - CD = BC - AC = a+2 - a = 2 

Hay \(\left(a+1\right)^2=2\left(a+2\right)\)

\(\Leftrightarrow a^2+2a+1=2a+4\Leftrightarrow a^2=3\Leftrightarrow a=\pm\sqrt{3}\)(loại vì a thuộc N*)

Vậy độ dài 3 cạnh trong \(\Delta\)ABC t/m đề là AB = 2; AC = 3; BC = 4. 

Big City Boy
Xem chi tiết
Akai Haruma
13 tháng 3 2021 lúc 13:23

Hình như mình đã nhắc nhở bạn một lần về việc không đăng quá nhiều lần 1 bài toán nhưng bạn vẫn làm vậy. Lần sau mình xin phép sẽ xóa hết nhé!

Lời giải:

$3\widehat{A}+2\widehat{B}=180^0$

$\Rightarrow \widehat{A}+\widehat{B}< 90^0\Rightarrow \widehat{C}>90^0$

Do đó trong tam giác $ABC$ thì $AB$ là cạnh lớn nhất. Trên $AB$ lấy $M$ sao cho $AM=AC$

Ta có: 

$\widehat{AMC}=\frac{180^0-\widehat{A}}{2}$

$\Rightarrow \widehat{BMC}=180^0-\frac{180^0-\widehat{A}}{2}=180^0-\frac{3\widehat{A}+2\widehat{B}-\widehat{A}}{2}$

$=180^0-(\widehat{A}+\widehat{B})=\widehat{ACB}$

Do đó:

$\triangle ACB\sim \triangle CMB$ (g.g)

$\Rightarrow \frac{AB}{CB}=\frac{CB}{MB}$

$\Rightarrow AB.MB=BC^2$

$\Leftrightarrow AB(AB-AM)=BC^2$

$\Leftrightarrow AB^2-AB.AC=BC^2$.

Nếu $(AB,BC,AC)=(k, k+2, k+4)$ thì:

$k^2-k(k+4)=(k+2)^2$

$\Leftrightarrow k^2+8k+4=0$

$\Leftrightarrow k=-4\pm 2\sqrt{3}$ (loại vì $k$ tự nhiên)

Nếu $(AB, BC, AC)=(k+2, k, k+4)$ thì:

$(k+2)^2-(k+2)(k+4)=k^2$

$\Leftrightarrow k^2+2k+4=0$

$\Leftrightarrow (k+1)^2=-3< 0$ (vô lý)

Vậy không tìm được chu vi.
 

Akai Haruma
13 tháng 3 2021 lúc 13:25

Hình vẽ:

undefined

Anh Triêt
Xem chi tiết
Anh Triêt
6 tháng 2 2018 lúc 22:00

@Phạm Hoàng Giang

Anh Triêt
6 tháng 2 2018 lúc 22:07

@trần anh tú

Aki Tsuki
6 tháng 2 2018 lúc 22:31

Hình:

B A C 50o

Có: \(\widehat{B}:\widehat{C}=2:3\Rightarrow\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}\)

\(\widehat{B}+\widehat{C}=180^o-\widehat{A}=180^o-50^0=130^o\)

Áp dụng tccdts= nhau có:

\(\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{B}+\widehat{C}}{2+3}=\dfrac{130}{5}=26\)

\(\Rightarrow\widehat{B}=26\cdot2=52^o;\widehat{C}=26\cdot3=78^o\)

=> \(\widehat{A}< \widehat{B}< \widehat{C}\Rightarrow BC< AC< AB\)

Đào Thị Lan Nhi
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
13 tháng 9 2023 lúc 22:40

a) Vì tam giác \(\Delta AMN\backsim\Delta ABC\)  nên ta có \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\) (các cạnh tương ứng)

Tỉ số đồng dạng là: \(\frac{{MN}}{{BC}} = \frac{4}{{12}} = \frac{1}{3}\).

b) Vì \(\Delta AMN\backsim\Delta ABC\) nên \(\widehat {AMN} = \widehat {ABC} = 65^\circ \)

Vậy \(\widehat {AMN} = 65^\circ \).

Nguyễn Lê Phước Thịnh
13 tháng 9 2023 lúc 22:40

a: AM/AB=AN/AC=MN/BC=4/12=1/3

b: góc AMN=góc ABC=65 độ

Nguyen Thi Thuy Trang
Xem chi tiết
Nguyễn Thế Việt
24 tháng 2 2022 lúc 15:28

lkjytreedfyhgfdfgff

Khách vãng lai đã xóa
Nguyễn Thế Việt
24 tháng 2 2022 lúc 15:29

lkjhgfgy6tyur65445676t 7 777676r64576556756777777777777/.,mnbvfggjhyjuhjtyj324345

Khách vãng lai đã xóa
Nguyễn Thế Việt
24 tháng 2 2022 lúc 15:34

o7uujghhjhjhjjt6yi89-ơ-0

Khách vãng lai đã xóa
Luyen Hoang Khanh Linh
Xem chi tiết
vũ thị thu thao
12 tháng 5 2017 lúc 14:59

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

Luyen Hoang Khanh Linh
12 tháng 5 2017 lúc 15:20

mình lên rồi nhưng ko có

bui yen chi
2 tháng 7 2018 lúc 10:25

A, Chứng Minh 

B, Có sẵn điều kiện

FK-HUYTA
Xem chi tiết
Hồng Phúc
20 tháng 12 2020 lúc 23:18

1.

\(\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AB}+\dfrac{c}{b+c}\overrightarrow{BC}=\dfrac{\left(b+c\right)\overrightarrow{AB}+c\overrightarrow{BC}}{b+c}=\dfrac{b\overrightarrow{AB}+c\overrightarrow{AC}}{b+c}\)

\(\Rightarrow AD^2=\dfrac{\left(b\overrightarrow{AB}+c\overrightarrow{AC}\right)^2}{\left(b+c\right)^2}=\dfrac{2b^2c^2+2b^2c^2.cosA}{\left(b+c\right)^2}=\dfrac{2b^2c^2\left(1+cos\alpha\right)}{\left(b+c\right)^2}\)

\(\Rightarrow AD=\dfrac{bc\sqrt{2+2cos\alpha}}{b+c}\)

Hồng Phúc
20 tháng 12 2020 lúc 23:33

2.

\(MA^2+MB^2+MC^2=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)

\(=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)

\(=3MG^2+GA^2+GB^2+GC^2\)

\(=3MG^2+\dfrac{4}{9}\left(AM^2+MB^2+MC^2\right)\)

\(=3MG^2+\dfrac{4}{9}\left(\dfrac{2b^2+2c^2-a^2}{4}+\dfrac{2a^2+2c^2-b^2}{4}+\dfrac{2a^2+2b^2-c^2}{4}\right)\)

\(=3MG^2+\dfrac{4}{9}.\dfrac{3}{4}\left(a^2+b^2+c^2\right)\)

\(=3MG^2+\dfrac{1}{3}\left(a^2+b^2+c^2\right)\)

Hồng Phúc
20 tháng 12 2020 lúc 23:43

3.

Hình vẽ:

Đặt các vecto đơn vị \(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\) cùng hướng \(\overrightarrow{AB};\overrightarrow{BC};\overrightarrow{CA}\)

Khi đó \(\left(\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}\right)^2=3-2\left(cosA+cosB+cosC\right)=3-2P\)

\(\Rightarrow3-2P=\left(\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}\right)^2\ge0\Rightarrow P\le\dfrac{3}{2}\)

\(maxP=\dfrac{3}{2}\Leftrightarrow\Delta ABC\) đều

Tohio- Chan
Xem chi tiết
Nguyễn Công Tỉnh
17 tháng 12 2018 lúc 14:37

Xét tg BDK,có:

BD=BC(gt)

DE=CE(theo phần a)

DK=CK(gt)

=>B,E,K thẳng hàng

và BK là đưòng trung trực của tg BDK

mà \(K\in DC\)

=>BK \(\perp\)DC hay \(KE\perp DC\)

hay EK 

Bảo Châm
Xem chi tiết