Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ctuu
Xem chi tiết
Trần Ái Linh
28 tháng 3 2021 lúc 15:26

`(x-1)/2013+(x-2)/2012+(x-3)/2011=(x-4)/2010+(x-5)/2009 +(x-6)/2008`

`<=> ((x-1)/2013-1)+((x-2)/2012-1)+((x-3)/2011-1)=( (x-4)/2010-1)+((x-5)/2009-1)+((x-6)/2008-1)`

`<=> (x-2014)/2013 +(x-2014)/2012+(x-2014)/2011=(x-2014)/2010+(x-2014)/2009+(x-2014)/2008`

`<=> x-2014=0` (Vì `1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 \ne 0`)

`<=>x=2014`

Vậy `S={2014}`.

Bảo Trâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 1 2022 lúc 21:37

=>x-2014=0

hay x=2014

Nguyễn Huy Tú
23 tháng 1 2022 lúc 21:41

\(\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2019}-1+\dfrac{x-5}{2010}-1+\dfrac{x-6}{2008}-1\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\ne0\right)=0\Leftrightarrow x=2014\)

Lê Thị Cẩm Giang
Xem chi tiết
Nguyễn Tân Vương
17 tháng 3 2023 lúc 22:25

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

\(\Leftrightarrow\left(\dfrac{x-1}{2013}-1\right)+\left(\dfrac{x-2}{2012}-1\right)+\left(\dfrac{x-3}{2011}-1\right)=\left(\dfrac{x-4}{2010}-1\right)+\left(\dfrac{x-5}{2009}-1\right)+\left(\dfrac{x-6}{2008}-1\right)\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}=\dfrac{x-2014}{2010}+\dfrac{x-2014}{2009}+\dfrac{x-2014}{2008}\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)

\(\Leftrightarrow\left(x-2014\right).A=0\)

\(\text{Vì A }\ne0\)

\(\Rightarrow x-2014=0\)

\(\Leftrightarrow x=2014\)

\(\text{Vậy phương trình có tập nghiệm là }S=\left\{2014\right\}\)

 

le thi thuy trang
Xem chi tiết
Bôô Bôô
6 tháng 3 2017 lúc 21:49

Bài của bạn nè bạn gái!

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

\(\Leftrightarrow\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2010}-1+\dfrac{x-5}{2009}-1+\dfrac{x-6}{2008}-1\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{1012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)

\(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{10}{2008}\ne0\)

\(\Rightarrow x-2014=0\Rightarrow x=2014\)

vậy x=2014

Thiên Tuyết Linh
6 tháng 3 2017 lúc 21:00

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

\(\Leftrightarrow\dfrac{x-1}{2013}+1+\dfrac{x-2}{2012}+1+\dfrac{x-3}{2011}+1-\dfrac{x-4}{2010}+1-\dfrac{x-5}{2009}+1-\dfrac{x-6}{2008}+1=0\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\ne0\right)=0\)

\(\Leftrightarrow x-2014=0\)

\(\Leftrightarrow x=2014\)

Vậy PT có nghiệm là \(x=2014\)

Lê Hữu Minh Chiến
6 tháng 3 2017 lúc 21:23

Trừ 1 vào mỗi phân thức ở vế trái, tương tự với vế phải sẽ xuất hiện tử thức chung x-2014 rồi đặt nó làm nhân tử chung => x=2014

Tưởng Y Y
Xem chi tiết
Trần Hoàng Minh
3 tháng 4 2018 lúc 19:47

\(x+2x+3x+...+2011x=2012.1013\)

\(\dfrac{2011\left(2011+1\right)}{2}x=2012.2013\)

\(x=2012.2013.\dfrac{2}{2011.2012}\)

\(x=\dfrac{4026}{2011}\)

Trần Hoàng Minh
3 tháng 4 2018 lúc 19:47

b thì chịu

Tường Nguyễn Thế
Xem chi tiết
ngonhuminh
1 tháng 3 2018 lúc 0:09

\(\Leftrightarrow\dfrac{4\sqrt{x-2009}-4}{x-2009}-1+\dfrac{4\sqrt{x-2009}-4}{x-2009}-1+\dfrac{4\sqrt{x-2009}-4}{x-2009}-1=0\)\(\Leftrightarrow-\dfrac{\left(\sqrt{x-2009}-2\right)^2}{x-2009}-\dfrac{\left(\sqrt{y-2010}-2\right)^2}{y-2010}-\dfrac{\left(\sqrt{z-2011}-2\right)^2}{z-2011}=0\)

VT <=0 đẳng thức khi và chỉ khi \(\left\{{}\begin{matrix}x-2009=4=>x=2013\\y=2014\\z=2015\end{matrix}\right.\)

Karry Angel
Xem chi tiết
Trương  Bảo Ngân
1 tháng 5 2018 lúc 9:14

Đặt a = \(\sqrt{x-2009}\)

b = \(\sqrt{y-2010}\)

c = \(\sqrt{z-2011}\)

\(\Leftrightarrow\dfrac{a-1}{a^2}+\dfrac{b-1}{b^2}+\dfrac{c-1}{c^2}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{a}-\dfrac{1}{a^2}+\dfrac{1}{b}-\dfrac{1}{b^2}+\dfrac{1}{c}-\dfrac{1}{c^2}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{a}-\dfrac{1}{a^2}-\dfrac{1}{4}+\dfrac{1}{b}-\dfrac{1}{b^2}-\dfrac{1}{4}+\dfrac{1}{c}-\dfrac{1}{c^2}-\dfrac{1}{4}=0\)

\(\Leftrightarrow-(\dfrac{1}{a}-\dfrac{1}{2})^2-\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2-\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2=0\)

Dấu = xảy ra khi
a = 2

b = 2

c = 2

\(\Leftrightarrow\sqrt{x-2009}=2\)

\(\sqrt{y-2010}=2\)

\(\sqrt{z-2011}=2\)

\(\Leftrightarrow x-2009=4\)

\(y-2010=4\)

\(z-2011=4\)

=> x = 2013

y = 2014

z = 2015

Ánh Nguyễn
Xem chi tiết
Nguyễn Thành Trương
31 tháng 1 2019 lúc 12:03

Lời giải:

Ta có $$\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4} \Leftrightarrow \left ( \frac{1}{\sqrt{x-2009}}-\frac{1}{2} \right )^2+\left ( \frac{1}{\sqrt{y-2010}}-\frac{1}{2} \right )^2+\left ( \frac{1}{\sqrt{z-2011}}-\frac{1}{2} \right )^2=0$$

$$\Rightarrow x=2013,y=2014,z=2015$$ :D:D:D:D

Nguyễn Bảo Ngọc
Xem chi tiết
TV Cuber
29 tháng 3 2022 lúc 21:13

refer

Hỏi đáp Toán

Giải bài 18 trang 14 SGK Toán 8 Tập 2 | Giải toán lớp 8