Giải phương trình
\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13-8\sqrt{2x-3}}=5\)
Giải phương trình:
\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
Ta có: \(\sqrt{2x-2+2\sqrt{2x-3}+\sqrt{2x+13+8\sqrt{2x-3}}}=5\)
\(\Leftrightarrow\sqrt{2x-2+2\sqrt{2x-3}+2\sqrt{2x-3}+4}=5\)
\(\Leftrightarrow\sqrt{2x+2+4\sqrt{2x-3}}=5\)
\(\Leftrightarrow\sqrt{2x-3+2\cdot\sqrt{2x-3}\cdot2+4+1}=5\)
\(\Leftrightarrow\left(\sqrt{2x-3}+2\right)^2+1=25\)
\(\Leftrightarrow\left(\sqrt{2x-3}+2\right)^2=24\)
\(\Leftrightarrow\sqrt{2x-3}+2=2\sqrt{6}\)
\(\Leftrightarrow2x-3=\left(2\sqrt{6}-2\right)^2\)
\(\Leftrightarrow2x-3=28-8\sqrt{6}\)
\(\Leftrightarrow2x=31-8\sqrt{6}\)
hay \(x=\dfrac{31-8\sqrt{6}}{2}\)
Giải phương trình:
\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
`\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8sqrt{2x-3}}=5(x>=3/2)`
`<=>\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5`
`<=>\sqrt{(\sqrt{2x-3}+1)^2}+\sqrt{(\sqrt{2x-3}+4)^2}=5`
`<=>\sqrt{2x-3}+1+\sqrt{2x-3}+4=5`
`<=>2\sqrt{2x-3}=0`
`<=>\sqrt{2x-3}=0<=>2x-3=0<=>x=3/2(tmdk)`
Vậy `S={3/2}`
Giải các phương trình sau:
a) \(\sqrt{x^2-6x+9}=4-x\)
b) \(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
\(\sqrt{x^{ }2-6x+9}=4-x\)
\(\sqrt{\left(x-3\right)^{ }2}=4-x\)
x-3=4-x
x+x=4+3
2x=7
x=\(\dfrac{7}{2}\)
Lời giải:
a.
PT \(\Leftrightarrow \left\{\begin{matrix} 4-x\geq 0\\ x^2-6x+9=(4-x)^2=x^2-8x+16\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\leq 4\\ 2x=7\end{matrix}\right.\Leftrightarrow x=\frac{7}{2}\)
b.
ĐKXĐ: $x\geq \frac{3}{2}$
PT \(\Leftrightarrow \sqrt{(2x-3)+2\sqrt{2x-3}+1}+\sqrt{(2x-3)+8\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow \sqrt{(\sqrt{2x-3}+1)^2}+\sqrt{(\sqrt{2x-3}+4)^2}=5\)
\(\Leftrightarrow |\sqrt{2x-3}+1|+|\sqrt{2x-3}+4|=5\)
\(\Leftrightarrow \sqrt{2x-3}+1+\sqrt{2x-3}+4=2\sqrt{2x-3}+5=5\)
\(\Leftrightarrow \sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)
a: Ta có: \(\sqrt{x^2-6x+9}=4-x\)
\(\Leftrightarrow\left|x-3\right|=4-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-x\left(x\ge3\right)\\x-3=x-4\left(x< 3\right)\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow2x=7\)
hay \(x=\dfrac{7}{2}\left(nhận\right)\)
\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}=5}\)
giải phương trình
\(\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)
\(\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)
\(|\sqrt{2x-3}+1|+|\sqrt{2x-3}+4|=5\)
roi xet cac truong hop cua gia tri tuyet doi roi giai
Giải phương trình
\(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-6\sqrt{2x-1}}=4\)
Giải phương trình :
\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
ĐKXĐ: \(x\ge\frac{3}{2}\)
\(\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)
\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)
\(\Leftrightarrow\sqrt{2x-3}+1+\sqrt{2x-3}+4=5\)
\(\Leftrightarrow2\sqrt{2x-3}=0\)
\(\Rightarrow2x-3=0\Rightarrow x=\frac{3}{2}\)
giải phương trình:
1,\(\sqrt{3x-8}\)-\(\sqrt{x+1}\)=\(\dfrac{2x-11}{5}\)
2,3x2-3x+18=10\(\sqrt{x^3+8}\)
3,\(\sqrt{5+2x}\)+\(\sqrt{5-2x}\)+5=3\(\sqrt{25-4x^2}\)
giải phương trình
a) x - \(\sqrt{x-1}\) -3 = 0
b)\(\sqrt{4x^2+8x+4}\) = x - 3
c) 2x + 5 +\(2\sqrt{2x+5}\) = 13
giải phương trình \(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}\)