\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13-8\sqrt{2x-3}}=5\\ \Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3-8\sqrt{2x-3}+16}=5\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}-4\right)^2}=5\\ \Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}-4\right|=5\\ \Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|4-\sqrt{2x-3}\right|=5\)
Có \(\left|\sqrt{2x-3}+1\right|+\left|4-\sqrt{2x-3}\right|\ge\left|\sqrt{2x-3}+1+4-\sqrt{2x-3}\right|=\left|5\right|=5\)
Dấu "=" xảy ra ⇔ Đẳng thức ban đầu xảy ra \(\Leftrightarrow\left(\sqrt{2x-3}+1\right)\left(4-\sqrt{2x-3}\right)=0\\ \Leftrightarrow4\sqrt{2x-3}-2x+3+4-\sqrt{2x-3}=0\\ \Leftrightarrow3\sqrt{2x-3}=2x-7\\ \Leftrightarrow\sqrt{2x-3}=\dfrac{2x-7}{3}\left(ĐK:x\ge\dfrac{7}{2}\right)\\ \Leftrightarrow2x-3=\dfrac{\left(2x-7\right)^2}{9}\\ \Leftrightarrow\left(2x-7\right)^2=9\left(2x-3\right)\\ \Leftrightarrow4x^2-28x+49-18x+27=0\\ \Leftrightarrow4x^2-40x+76=0\\ \Leftrightarrow x^2-10x+19=0\\ \Leftrightarrow\left(x^2-10x+25\right)-6=0\\ \Leftrightarrow\left(x-5\right)^2-\left(\sqrt{6}\right)^2=0\\ \Leftrightarrow\left(x-5-\sqrt{6}\right)\left(x-5+\sqrt{6}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+\sqrt{6}\left(tmđk\right)\\x=5-\sqrt{6}\left(ktmđk\right)\end{matrix}\right.\)
Vậy \(x=5+\sqrt{6}\) là nghiệm của pt.