Tìm 3 số x, y, z thoã:
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-z}=x+y+z\)
Tìm 3 số x, y, z thoã:
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-z}=x+y+z\)
Đây nek:
Câu hỏi của Công chúa vui vẻ - Toán lớp 7 | Học trực tuyến
Tìm x, y, z
\(\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}=\dfrac{1}{x+y+z}\)
Áp dụng tích chất của dãy tỉ số bằng nhau, ta có
\(\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}\\ =\dfrac{x+y+2+y+z+1+z+x-3}{z+x+y}=\dfrac{2\left(x+y+z\right)+\left(1+2-3\right)}{z+x+y}=2\\ Vì\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}=\dfrac{1}{x+y+z}\\ =>2=\dfrac{1}{x+y+z}=>2\left(x+y+z\right)=1=>x+y+z=\dfrac{1}{2}\\ =>\dfrac{x+y+2}{z}=2=>x+y+2=2z\\ \dfrac{y+z+1}{x}=2=>y+z+1=2x\\ \dfrac{z+x-3}{y}=2=>z+x-3=2y\\ \dfrac{1}{x+y+z}=2=>x+y+z=\dfrac{1}{2}\)
+) x+y+z = \(\dfrac{1}{2}=>y+z=\dfrac{1}{2}-x=>\dfrac{1}{2}-x+1=2x=>3x=\dfrac{3}{2}=>x=\dfrac{1}{2}\)
+)\(x+y+z=\dfrac{1}{2}=>x+y=\dfrac{1}{2}-z=>\dfrac{1}{2}-z+2=2z=>3z=\dfrac{5}{2}=>z=\dfrac{5}{6}\)
\(=>x+y+z=\dfrac{1}{2}+\dfrac{5}{6}+y=\dfrac{1}{2}=>\dfrac{4}{3}+y=\dfrac{1}{2}=>y=\dfrac{-5}{6}\)
Vậy \(x=\dfrac{1}{2}\\ y=\dfrac{-5}{6}\\ z=\dfrac{5}{6}\)
Ê mấy bọn 7B Nguyễn Lương Bằng ơi bài 2 Toán chiều làm thế này đúng chưa! Góp ý nha!
Cho x, y, z thỏa mãn \(\dfrac{1}{3^x}+\dfrac{1}{3^y}+\dfrac{1}{3^z}=1\). Chứng minh rằng:
\(\dfrac{9^x}{3^x+3^{y+z}}+\dfrac{9^y}{3^y+3^{z+x}}+\dfrac{9^z}{3^z+3^{x+y}}\ge\dfrac{3^x+3^y+3^z}{4}\)
\(\left(3^x;3^y;3^z\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a;b;c>0\\ab+bc+ca=abc\end{matrix}\right.\)
BĐT cần chứng minh trở thành:
\(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ab}\ge\dfrac{a+b+c}{4}\)
Thật vậy, ta có:
\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)
\(VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+c\right)\left(b+c\right)}\)
Áp dụng AM-GM:
\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge\dfrac{3a}{4}\)
Làm tương tự với 2 số hạng còn lại, cộng vế với vế rồi rút gọn, ta sẽ có đpcm
Tìm x,y,z:
\(\dfrac{y+z+1}{x}\)=\(\dfrac{x+z+2}{y}\)=\(\dfrac{x+y-3}{z}\)=\(\dfrac{1}{x+y+z}\)
Lời giải:
Áp dụng TCDTSBN:
$\frac{1}{x+y+z}=\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2(x+y+z)}{x+y+z}=2$
\(\Rightarrow \left\{\begin{matrix} x+y+z=\frac{1}{2}\\ y+z+1=2x\\ x+z+2=2y\\ x+y-3=2z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+y+z=\frac{1}{2}\\ x+y+z+1=3x\\ x+y+z+2=3y\\ x+y+z-3=3z\end{matrix}\right.\)
\(\left\{\begin{matrix} \frac{1}{2}+1=3x\\ \frac{1}{2}+2=3y\\ \frac{1}{2}-3=3z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=\frac{1}{2}\\ y=\frac{5}{6}\\ z=\frac{-5}{6}\end{matrix}\right.\)
Tìm x, y, z biết rằng:
a) \(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=x+y+z\)
b)\(\dfrac{y+z+1}{x}=\dfrac{z+x+2}{y}=\dfrac{x+y-3}{z}+=\dfrac{1}{x+y+z}\)
a) Với \(x+y+z=0\) ta tìm được \(\left(x;y;z\right)\rightarrow\left(0;0;0\right)\)
Với \(x+y+z\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
Hay: \(x+y+z=\dfrac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}y+z=\dfrac{1}{2}-x\\x+z=\dfrac{1}{2}-y\\x+y=\dfrac{1}{2}-z\end{matrix}\right.\)
Thay vào đề bài ta được:
\(\dfrac{x}{\dfrac{1}{2}-x+1}=\dfrac{y}{\dfrac{1}{2}-y+1}=\dfrac{z}{\dfrac{1}{2}-z-2}=\dfrac{1}{2}\) Dễ dàng tìm được x;y;z
b) Theo đề bài ta có sẵn x+y+z khác 0
Áp dụng dãy tỉ số rồi làm tương tự câu a
tìm số tự nhiên cs 3 chữ số \(\overline{xyz}\) biết : \(\dfrac{x^2}{4}\) =\(\dfrac{y^2}{9}\)=\(\dfrac{z^2}{25}\) và x-y+z =4
Ta có: \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}=\dfrac{x^2}{2^2}=\dfrac{y^2}{3^2}=\dfrac{z^2}{5^2}\rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/5=(x-y+z)/(2-3+5)=4/4=1`
`-> x/2=y/3=z/5=1`
`-> x=2*1=2, y=3*1=3, z=5*1=5`
=>x/2=y/3=z/5 và x-y+z=4
Áp dụng tính chất của DTSBN, ta được:
x/2=y/3=z/5=(x-y+z)/(2-3+5)=4/4=1
=>x=2; y=3; z=5
Ta có: \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
\(\Rightarrow\dfrac{x}{2}=1\Rightarrow x=2\)
\(\dfrac{y}{3}=1\Rightarrow y=3\)
\(\dfrac{z}{5}=1\Rightarrow z=5\)
Vậy x =2; y =3; z =5
Tìm x;y;z biết
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\dfrac{1}{x+y+z}=2\Rightarrow2x+2y+2z=1\Rightarrow x+y+z=0,5\Rightarrow\left\{{}\begin{matrix}x+y=0,5-z\\y+z=0,5-x\\x+z=0,5-y\end{matrix}\right.\\ \dfrac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow0,5-x+1=2x\Rightarrow x=0,5\\ \dfrac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow0,5-y+2=2y\Rightarrow y=\dfrac{5}{6}\\ \dfrac{x+y-3}{z}=2\Rightarrow x+y-3=2z\Rightarrow0,5-z-3=2z\Rightarrow z=-\dfrac{5}{6}\)
cho x , y, z ≠0 thỏa mãn \(\dfrac{x+y-z}{z}\)=\(\dfrac{y+z-x}{x}\)=\(\dfrac{z+x-y}{y}\). tính P=(1+\(\dfrac{x}{y}\)).(1 +\(\dfrac{y}{z}\)).(1+\(\dfrac{z}{x}\))
Lời giải:
Nếu $x+y+z=0$ thì:
$\frac{x+y-z}{z}=\frac{-z-z}{z}=-2$
$\frac{y+z-x}{x}=\frac{-x-x}{x}=-2$
$\frac{z+x-y}{y}=\frac{-y-y}{y}=-2$
(thỏa mãn đkđb)
Khi đó:
$P=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{xyz}$
$=\frac{(-z)(-x)(-y)}{xyz}=\frac{-xyz}{xyz}=-1$
Nếu $x+y+z\neq 0$
Áp dụng TCDTSBN:
$\frac{x+y-z}{z}=\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z+y+z-x+z+x-y}{z+x+y}=\frac{x+y+z}{x+y+z}=1$
$\Rightarrow x+y=2z; y+z=2x, z+x=2y$. Khi đó:
$P=\frac{(x+y)(y+z)(z+x)}{xyz}=\frac{2z.2x.2y}{xyz}=8$
Đề bài: ax,y,z >0 và \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\). Tìm Min P= \(\dfrac{x^3}{y+z}+\dfrac{y^3}{z+x}+\dfrac{z^3}{x+y}\).
ĐÁP ÁN:
Ta có: \(\dfrac{x^3}{y+z}+\dfrac{y+z}{36}+\dfrac{1}{162}+\dfrac{y^3}{x+z}+\dfrac{x+z}{36}+\dfrac{1}{162}+\dfrac{z^3}{x+y}+\dfrac{x+y}{36}+\dfrac{1}{162}\ge3\sqrt[3]{\dfrac{x^3}{y+z}.\dfrac{y+z}{36}.\dfrac{1}{162}}+3\sqrt[3]{\dfrac{y^3}{x+z}.\dfrac{x+z}{36}.\dfrac{1}{162}}+3\sqrt[3]{\dfrac{z^3}{x+y}.\dfrac{x+y}{36}.\dfrac{1}{162}}=3\sqrt[3]{\dfrac{x^3}{36.162}}+3\sqrt[3]{\dfrac{y^3}{36.162}}+3\sqrt[3]{\dfrac{z^3}{36.162}}=\dfrac{x+y+z}{6}.\)
=> P+\(\dfrac{x+y+z}{18}+\dfrac{1}{54}\)≥\(\dfrac{x+y+z}{6}\) <=> P≥\(\dfrac{x+y+z}{6}-\dfrac{x+y+z}{18}-\dfrac{1}{54}\)=\(\dfrac{x+y+z}{9}-\dfrac{1}{54}\)
Ta c/m đc: 3(x+y+z)≥(\(\sqrt{x}+\sqrt{y}+\sqrt{z}\))2 <=> 2(x+y+z) ≥2\(\left(\sqrt{xy}+\sqrt{xz}+\sqrt{yz}\right)\)<=> x+y+z≥\(\sqrt{xy}+\sqrt{xz}+\sqrt{yz}\)(luôn đúng)
➩x+y+z ≥ \(\dfrac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^3}{3}=\dfrac{1}{3}\) => P≥\(\dfrac{1}{54}\). Dấu ''='' xảy ra <=> x=y=z=\(\dfrac{1}{9}\)