HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Các số ko chia hết cho 2 là các số lẻ
Ta có dãy số sau: 11;13;15;17;19;..........;99
Dãy số trên có các số hạng là:
(99-11):2+1=45 (số)
Vậy tổng của tất cả các số có 2 chữ số không chia hết cho 2 là:
(99+11)x45:2=2475
Ta có:
\(\dfrac{1+2y}{18}=\dfrac{1+4y}{24}\Leftrightarrow24+48y=18+72y\Leftrightarrow24=18+24y\)
\(\Rightarrow24y=6\Leftrightarrow y=\dfrac{1}{4}\)
Thay vào tìm được x
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\Leftrightarrow a=b=c\)
Ta có: \(a-b=b-c=c-a=0\)
\(M=0\)
cau nay kho qua mh xin chiu
3.tên mình
4.cái bóng
\(a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(\Rightarrow a^3+b^3+abc\ge a^2b+b^2a+abc\)
\(\Rightarrow a^3+b^3\ge a^2b+b^2a\)
\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\)
\(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)
\(\Rightarrow2\left(a+b\right)\left(a^2-ab+b^2\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)
\(\Rightarrow2\left(a^2-ab+b^2\right)\ge a^2+b^2\)
\(\Rightarrow2a^2-2ab+2b^2\ge a^2+b^2\)
\(\Rightarrow\left(a^2+b^2-2ab\right)+a^2+b^2\ge a^2+b^2\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\ge\dfrac{\left(1+1\right)^2}{x^2+2xy+y^2}=\dfrac{4}{\left(x+y\right)^2}\ge\dfrac{4}{1}=4\)
Trong 3 số \(a;b;c\) có ít nhất 2 số cùng dấu. Như vậy sẽ có tích của 2 số lớn hơn hoặc bằng 0. Giả sử: \(xy\ge0\Leftrightarrow2xy\ge0\) (1)
\(-1\le a;b;c\le1\Leftrightarrow a^2;b^2;c^2\le1\) (2)
Từ (1) và (2) ta có:
\(x^2+y^4+z^6=x^2+y^2.y^2+z^2.z^2.z^2\le x^2+y^2.1+z^2.1.1=x^2+y^2+z^2\le x^2+y^2+z^2+2xy=\left(x+y\right)^2+z^2=z^2+z^2=2z^2\le2\)
Ta có điều phải chứng minh