Chương I : Số hữu tỉ. Số thực

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Băng Băng

Tìm 3 số x, y, z thoã:

\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-z}=x+y+z\)

 Mashiro Shiina
18 tháng 12 2017 lúc 13:01

Sửa đề: \(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)

Lời giải:

Xét: \(x+y+z=0\Leftrightarrow\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z=0\Leftrightarrow x=y=z=0\)

Xét: \(x+y+z\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{y+z+x+z+x+y+1+1-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y+z+1}=\dfrac{1}{2}\\\dfrac{y}{x+z+1}=\dfrac{1}{2}\\\dfrac{z}{x+y-2}=\dfrac{1}{2}\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y+z+1=2x\\x+z+1=2y\\x+y-2=2z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\) (1)

Từ \(x+y+z=\dfrac{1}{2}\) ta có: \(\left\{{}\begin{matrix}y+z=\dfrac{1}{2}-x\\x+y=\dfrac{1}{2}-z\\x+z=\dfrac{1}{2}-y\end{matrix}\right.\)

Thay vào pt(1) ta có:

\(\dfrac{x}{\dfrac{1}{2}-x+1}=\dfrac{y}{\dfrac{1}{2}-y+1}=\dfrac{z}{\dfrac{1}{2}-z-2}=\dfrac{1}{2}\)

Dễ dàng tìm được \(x;y;z\)


Các câu hỏi tương tự
Phạm Băng Băng
Xem chi tiết
Hoàng Trần Trà My
Xem chi tiết
KaKa Ri
Xem chi tiết
Đậu Thị Khánh Huyền
Xem chi tiết
Phạm Hương Giang
Xem chi tiết
Đậu Thị Khánh Huyền
Xem chi tiết
Bốp Chít
Xem chi tiết
Trang Nguyễn Thu
Xem chi tiết
Myrie thieu nang :)
Xem chi tiết