Chương I : Số hữu tỉ. Số thực

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
KaKa Ri

\(\dfrac{x-y+z}{z}=\dfrac{y+z-x}{x}=\dfrac{x-y+z}{y}\)

Tính A= \(\left(1+\dfrac{y}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{x}{z}\right)\)

Chỉ_Có_1_Mk_Tôi
28 tháng 10 2017 lúc 6:07

\(\dfrac{x+y-z}{z}=\dfrac{y+z-x}{x}=\dfrac{x-y+z}{y}\)

\(\Rightarrow\dfrac{x+y-z}{z}+2=\dfrac{y+z-x}{x}+2=\dfrac{x-y+z}{y}+2\)

\(\Rightarrow\dfrac{x+y-z}{z}+\dfrac{2z}{z}=\dfrac{y+z-x}{x}+\dfrac{2x}{x}=\dfrac{x-y+z}{y}+\dfrac{2y}{y}\)

\(\Rightarrow\dfrac{x+y-z+2z}{z}=\dfrac{y+z-x+2x}{x}=\dfrac{x-y+z+2y}{y}\)

\(\Rightarrow\dfrac{x+y+z}{z}=\dfrac{y+z+x}{x}=\dfrac{x+z+y}{y}\)

Điều này xảy ra khi và chỉ khi: \(\left[{}\begin{matrix}x+y+z=0\\x=y=z\end{matrix}\right.\)

\(\circledast\)Với \(x+y+z=0\Leftrightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)

Thay vào \(A\) ta có: \(A=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{x}{z}\right)=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{z+x}{z}\right)=\dfrac{-z.-x.-y}{xyz}=\dfrac{-xyz}{xyz}=-1\)

\(\circledast\) Với \(x=y=z\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{y}=1\\\dfrac{y}{z}=1\\\dfrac{x}{z}=1\end{matrix}\right.\)

Thay vào \(A\) ta có:

\(A=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)


Các câu hỏi tương tự
Đậu Thị Khánh Huyền
Xem chi tiết
Người €õi âM
Xem chi tiết
maivananh
Xem chi tiết
Khong Biet
Xem chi tiết
Đậu Thị Khánh Huyền
Xem chi tiết
Trâm Trương
Xem chi tiết
Hoàng Trần Trà My
Xem chi tiết
Nguyen Ngoc Anh Linh
Xem chi tiết
Ngô Tấn Đạt
Xem chi tiết