Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Xuân Phúc
Xem chi tiết
ko ko
Xem chi tiết
Nguyễn Khánh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 1 2021 lúc 10:17

Sửa đề: \(P=x^{2008}+y^{2009}+z^{2010}\)

Ta có: x+y+z=1

nên \(\left(x+y+z\right)^3=1\)

\(\Leftrightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)=1\)

\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)+1=1\)

\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

mà 3>0

nên \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\x+z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)

Thay x=-y vào biểu thức \(x+y+z=1\), ta được:

\(-y+y+z=1\)

hay z=1

Thay x=-y và z=1 vào biểu thức \(x^2+y^2+z^2=1\), ta được:

\(\left(-y\right)^2+y^2+1=1\)

\(\Leftrightarrow y^2+y^2=0\)

\(\Leftrightarrow2y^2=0\)

hay y=0

Vì x=-y

và y=0

nên x=0

Thay x=0; y=0 và z=1 vào biểu thức \(P=x^{2008}+y^{2009}+z^{2010}\), ta được:

\(P=0^{2008}+0^{2009}+1^{2010}=1\)

Vậy: P=1

Nguyên Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2023 lúc 22:01

a: (x+y+z)^3-x^3-y^3-z^3

=(x+y+z-x)(x^2+2xy+y^2-x^2-xy-xz+z^2)-(y+z)(y^2-yz+z^2)

=(x+y)(y+z)(x+z)

b: x^3+y^3+z^3=1

x+y+z=1

=>x+y=1-z

x^3+y^3+z^3=1

=>(x+y)^3+z^3-3xy(x+y)=1

=>(1-z)^3+z^3-3xy(1-z)=1

=>1-3z-3z^2-z^3+z^3-3xy(1-z)=1

=>1-3z+3z^2-3xy(1-z)=1

=>-3z+3z^2-3xy(1-z)=0

=>-3z(1-z)-3xy(1-z)=0

=>(z-1)(z+xy)=0

=>z=1 và xy=0

=>z=1 và x=0; y=0

A=1+0+0=1

Phạm Thảo Linh
Xem chi tiết
Xyz OLM
18 tháng 12 2020 lúc 5:18

Ta có : x3 + y3 = z(3xy - z2)

=> x3 + y3 = 3xyz - z3

=> x3 + y3 + z3 - 3xyz = 0

=> (x + y)(x2 - xy + y2) + z3 - 3xyz = 0

=> (x + y)3 - 3xy(x + y) + z3 - 3xyz = 0

=> [(x + y)3 + z3] - 3xy(x + y) - 3xyz  = 0

=> (x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z) = 0

=> (x + y +z)(x2 + y 2 + 2xy - xz - yz + z2) - 3xy(x + y + z) = 0

=> (x + y + z)(x2 + y2 + z2 - xy - yz - zx) = 0

=> x2 + y2 + z2 - xy - yz - zx = 0 (Vì x + y + z = 3)

=> 2(x2 + y2 + z2 - xy - yz - zx) = 0

=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx = 0

=> (x2 - 2xy + y2) + (y2 - 2yz + z2) + (x2 - 2zx + z2) = 0

=> (x - y)2 + (y - z)2 + (x - z)2 = 0

=> \(\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}}\Rightarrow x=y=z\)

mà x + y + z = 3

=> x = y = z = 1

Khi đó A = 673(x2019 + y2019 + z2019) + 1 

= 673(12019 + 12019 + 12019) + 1

= 673.3 + 1 = 2020

Vậy A = 2020

Khách vãng lai đã xóa
Nguyễn Hữu Quang
Xem chi tiết

Bài 3:

a, (\(x\)+y+z)2

=((\(x\)+y) +z)2

= (\(x\) + y)2 + 2(\(x\) + y)z + z2

\(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2

=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz

 

b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))

\(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3 

Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé

c,

(\(x\) + y + z)3 

=(\(x\) + y)3 + 3(\(x\) + y)2z + 3(\(x\)+y)z2 + z3

\(x^3\) + 3\(x^2\)y + 3\(xy^{2^{ }}\) + y3 +  3(\(x\)+y)z(\(x\) + y + z) + z3

\(x^3\) + y3 + z3 + 3\(xy\)(\(x\) + y) + 3(\(x+y\))z(\(x+y+z\))

\(x^3\) + y3 + z+ 3(\(x\) + y)( \(xy\) + z\(x\) + yz + z2)

\(x^3\) + y3 + z3 + 3(\(x\) + y){(\(xy+xz\)) + (yz + z2)}

\(x^3\) + y3 + z3 + 3(\(x\) + y){ \(x\)( y +z) + z(y+z)}

\(x^3\) + y3 + z3 + 3(\(x\) + y)(y+z)(\(x+z\)) (đpcm)

 

 

Nguyễn Đức Duy
Xem chi tiết
Nguyễn Đức Trí
17 tháng 7 2023 lúc 0:59

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Rightarrow2\left(xy+yz+xz\right)=\left(x+y+z\right)^2+\left(x^2+y^2+z^2\right)\)

\(\Rightarrow2\left(xy+yz+xz\right)=a^2+b\)

\(\Rightarrow xy+yz+xz=\dfrac{a^2+b}{2}\)

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{c}\Rightarrow\dfrac{xy+yz+xz}{xyz}=\dfrac{1}{c}\)

\(\Rightarrow xyz=c\left(xy+yz+xz\right)\)

\(\Rightarrow xyz=\dfrac{\left(a^2+b\right)c}{2}\)

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(\Rightarrow x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz\)

\(\Rightarrow x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-\left(xy+yz+xz\right)\right)+3xyz\)

\(\Rightarrow x^3+y^3+z^3=a\left(b-\dfrac{a^2+b}{2}\right)+3\dfrac{\left(a^2+b\right)c}{2}\)

\(\Rightarrow x^3+y^3+z^3=a\dfrac{\left(b-a^2\right)}{2}+3\dfrac{\left(a^2+b\right)c}{2}\)

Cá cầm phóng lợn Top 1
Xem chi tiết
Hà Quang Minh
20 tháng 9 2023 lúc 20:35

Đề bài yêu cầu gì vậy em.

♕1$t_ℳ.LượℕᎶ❖★彡
Xem chi tiết
Ngô Chi Lan
5 tháng 10 2020 lúc 12:46

Ta có: \(x^3+y^3=3xyz-z^3\)

\(\Leftrightarrow\left(x^3+y^3\right)+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)

\(\Leftrightarrow\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow3\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}}\left(\forall x,y,z\right)\Rightarrow Vt\ge0\left(\forall x,y,z\right)\)

Dấu "=" xảy ra khi: \(\left(x-y\right)^2=\left(y-z\right)^2=\left(z-x\right)^2=0\)

\(\Rightarrow x=y=z=1\)

Từ đó \(P=673\cdot\left(1^{2020}+1^{2020}+1^{2020}\right)+1=2020\)

Vậy P = 2020

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 1 2017 lúc 5:52

Đáp án B