ptích đa thức thành nhân tử
x2(x-1)+16(1-x)
Phân tích các đa thức sau thành nhân tử:
a) 4 x 2 - 4x + 1; b) 16 y 3 - 2 x 3 - 6x(x + 1) - 2;
c) 2 x 2 +7x + 5; d) x 2 - 6xy - 25 z 2 +9 y 2
Phân tích đa thức thành nhân tử:
(x2+x+1)(x2+x+5)-21
\(\left(x^2+x+1\right)\left(x^2+x+5\right)-21=x^4+x^3+5x^2+x^3+x^2+5x+x^2+x+5-21=x^4+2x^3+7x^2+6x-16=\left(x-1\right)\left(x+2\right)\left(x^2+x+8\right)\)
\(=\left(x^2+x+1\right)\left(x^2+x+1+4\right)-21\)
\(=\left(x^2+x+1\right)^2+4\left(x^2+x+1\right)-21\)
\(=\left(x^2+x+1\right)^2-3\left(x^2+x+1\right)+7\left(x^2+x+1\right)-21\)
\(=\left(x^2+x+1\right)\left(x^2+x-2\right)+7\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2+x+8\right)\)
\(\left(x^2+x+1\right)\left(x^2+x+5\right)-21\)
\(=\left(x^2+x\right)^2+6\left(x^2+x\right)+5-21\)
\(=\left(x^2+x\right)^2+6\left(x^2+x\right)-16\)
\(=\left(x^2+x+8\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+8\right)\left(x+2\right)\left(x-1\right)\)
Bài 3: Phân tích các đa thức sau thành nhân tử:
a) x2 + 10x + 25. b) 8x - 16 - x2
c) x3 + 3x2 + 3x + 1 d) (x + y)2 - 9x2
e) (x + 5)2 – (2x -1)2
Bài 4: Tìm x biết
a) x2 – 9 = 0 b) (x – 4)2 – 36 = 0
c) x2 – 10x = -25 d) x2 + 5x + 6 = 0
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2
Phân tích đa thức thành nhân tử:
1,3x3y + 6x2y2 + 3 xy3
2,14x2y - 21xy2 + 28x2y2
3,x2 (x-1) + 4(1-x)
4,10x(x-y) - 8(y-x)
5,8a(b-c) + 6b (c-b)
6,x2 (x-1) + 16(1-x)
7,x2 - xy + 5x - 5y
8,(3x + 1)2 - (x + 1)2
9,8x3 - 27y3
10,x2 - 2x + 1 - 4y2
\(1,=3xy\left(x^2+2xy+y^2\right)=3xy\left(x+y\right)^2\\ 2,=7xy\left(2x-3y+4xy\right)\\ 3,=\left(x-1\right)\left(x^2-4\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\\ 4,=\left(x-y\right)\left(10x+8\right)=2\left(5x+4\right)\left(x-y\right)\\ 5,=\left(b-c\right)\left(8a-6b\right)=2\left(4a-3b\right)\left(b-c\right)\\ 6,=\left(x-1\right)\left(x^2-16\right)=\left(x-4\right)\left(x+4\right)\left(x-1\right)\\ 7,=x\left(x-y\right)+5\left(x-y\right)=\left(x-y\right)\left(x+5\right)\\ 8,=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\\ 9,=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\\ 10,=\left(x-1\right)^2-4y^2=\left(x-2y-1\right)\left(x+2y-1\right)\)
phân tích đa thức (x2- x+ 1)2 - 5x( x2 -x +1)2 + 4x2 thành nhân tử
-Đặt \(t=\left(x^2-x+1\right)\)
\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2\)
\(=t^2-5xt+4x^2\)
\(=t^2-4xt-xt+4x^2\)
\(=t\left(t-4x\right)-x\left(t-4x\right)\)
\(=\left(t-4x\right)\left(t-x\right)\)
\(=\left(x^2-x+1-4x\right)\left(x^2-x+1-x\right)\)
\(=\left(x^2-5x+1\right)\left(x^2-2x +1\right)\)
\(=\left(x^2-5x+1\right)\left(x-1\right)^2\)
Câu 56:Đa thức x(x – 7) + (7 – x)2 được phân tích thành nhân tử là:
A. (x - 7)(2x + 7) B. (x - 7)(2x - 7) C. 7(x - 7) D. (x - 7)(x + 7)
Câu 57:Phân tích đa thức x2 – 16 – 4xy + 4y2 thành nhân tử ta được:
A. (x – 2y + 4)(x + 2y + 4) B. (x – 2y + 4)(x – 2y – 4)
C. (x – 2y + 4)(x + 2y + 4) D. Không phân tích được
Câu 58:Đa thức (x – 4)2 + (x – 4) được phân tích thành nhân tử là:
A. (x + 4)(x – 4) B. (x – 4)(x – 3) C. (x + 4)(x + 3) D. (x – 4)(x – 5)
phân tích đa thức . x2 + 2x + 1 - 16 thành nhân tử
\(x^2+2x+1-16=\left(x+1\right)^2-4^2=\left(x+1-4\right).\left(x+1+4\right)=\left(x-3\right).\left(x+5\right)\)
\(x^2+2x+1-16=\left(x^2+2x+1\right)-4^2=\left(x+1\right)^2-4^2=\left(x+1-4\right)\left(x+1+4\right)=\left(x-3\right)\left(x+5\right)\)
\(x^2+2x+1-16=\left(x+5\right)\left(x-3\right)\)
Phân tích đa thức thành nhân tử:
3(x-1)-x+x2
\(=3\left(x-1\right)+x\left(x-1\right)\)
\(=\left(x-1\right)\left(x+3\right)\)
Phân tích đa thức thành nhân tử:
a ) x 2 + x y – x – y b ) a 2 – b 2 + 8 a + 16
a) x2 + xy –x – y = x(x + y) – (x + y) = (x + y)(x -1 ).
b) a2 – b2 + 8a + 16 = (a2 + 8a + 16) – b2 = (a + 4)2 – b2
= (a + 4 – b)(a + 4 + b).
x3-x2-x+1 → phân tích các đa thức thành nhân tử
\(x^2\left(x-1\right)-\left(x-1\right)=\left(x^2-1\right)\left(x-1\right)\)
\(x^3-x^2-x+1\)
\(=x^2\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)^2\cdot\left(x+1\right)\)
\(x^3-x^2-x+1=\left(x^3-x^2\right)-\left(x-1\right)=x^2\left(x-1\right)-\left(x-1\right)=\left(x^2-1\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)^2\)