giải hệ \(\left\{{}\begin{matrix}\sqrt{7x+y}+\sqrt{2x+y}=5\\\sqrt{x+4y}+x-y=2\end{matrix}\right.\)
giải hệ phương trình:
\(\left\{{}\begin{matrix}\sqrt{7x+y}+\sqrt{2x+y}=5\\\sqrt{x+4y}+x-y=2\end{matrix}\right.\)
giúp mik giải bài hệ pt vs ạ!
1,\(\left\{{}\begin{matrix}x^2+y^2+\dfrac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}2x^3+xy^2+x=y^3+4x^2y+2y\\\sqrt{4x^2+x+6}-5\sqrt{1+2y}=1-4y\end{matrix}\right.\)
3,\(\left\{{}\begin{matrix}2x^2+\sqrt{2}x=\left(x+y\right)y+\sqrt{x+y}\\\sqrt{x-1}+xy=\sqrt{y^2+21}\end{matrix}\right.\)
4,\(\left\{{}\begin{matrix}\sqrt{9y^2+\left(2y+3\right)\left(y-x\right)}+4\sqrt{xy}=7x\\\left(2y-1\right)\sqrt{1+x}+\left(2y+1\right)\sqrt{1-x}=2y\end{matrix}\right.\)
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.
Điều kiện:\(9y^2+(2y+3)(y-x)\geq 0;xy\geq 0;-1\leq x\leq 1\)
Từ phương trình thứ nhất có \(x\geq 0\Rightarrow y\geq 0\)
Xét \(\left\{\begin{matrix} x=0\\ y=0 \end{matrix}\right.\) thỏa mãn hệ
Xét x,y không đồng thời bằng 0, ta có
\(\sqrt{9y^2+(2y+3)(y-x)}-3x+4\sqrt{xy}-4x=0\)
\(\Leftrightarrow \frac{9y^2+(2y+3)(y-x)-9x^2}{\sqrt{9y^2+(2y-3)(y-x)+3x}}+\frac{4(xy-x^2)}{\sqrt{xy}+x}=0\)
\(\Leftrightarrow (y-x)\left [ \frac{11y+9x+3}{\sqrt{11y^2+(2y-3)(y-x)+3x}}+\frac{4x}{\sqrt{xy}+x} \right ]=0\Leftrightarrow y=x\)
Tới đây thay vào phương trình (2) giải dễ dàng.
giải hệ phương trình
\(\left\{{}\begin{matrix}\left(y+1\right)^2+y\sqrt{y^2+1}=x+\dfrac{3}{2}\\x+\sqrt{x^2-2x+5}=1+2\sqrt{2x-4y+2}\end{matrix}\right.\)
ĐKXĐ:...
Từ pt đầu:
\(\Leftrightarrow y^2+y\sqrt{y^2+1}=x-2y+\dfrac{1}{2}\)
\(\Leftrightarrow y^2+1+2y\sqrt{y^2+1}+y^2=2x-4y+2\)
\(\Leftrightarrow\left(\sqrt{y^2+1}+y\right)^2=2x-4y+2\)
\(\Leftrightarrow\sqrt{y^2+1}+y=\sqrt{2x-4y+2}\)
Thế xuống pt dưới:
\(x+\sqrt{x^2-2x+5}=1+2\sqrt{y^2+1}+2y\)
\(\Leftrightarrow\left(x-1\right)+\sqrt{\left(x-1\right)^2+4}=2y+\sqrt{\left(2y\right)^2+4}\)
Do hàm \(t+\sqrt{t^2+4}\) đồng biến
\(\Leftrightarrow x-1=2y\Rightarrow x=2y+1\)
Thế vào pt đầu:
\(\left(y+1\right)^2+y\sqrt{y^2+1}=2y+\dfrac{5}{2}\)
\(\Leftrightarrow y^2+y\sqrt{y^2+1}=\dfrac{3}{2}\)
\(\Leftrightarrow\left(\sqrt{y^2+1}+y\right)^2=4\)
\(\Leftrightarrow\sqrt{y^2+1}+y=2\)
\(\Leftrightarrow\sqrt{y^2+1}=2-y\)
\(\Leftrightarrow...\)
Giải các hệ phương trình sau:
a, \(\left\{{}\begin{matrix}\sqrt{5}x-y=\sqrt{5}\left(\sqrt{3}-1\right)\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}7x=4y\\x-y+3=0\end{matrix}\right.\)
a/\(\left\{{}\begin{matrix}\sqrt{5}-y=\sqrt{5}\left(\sqrt{3}-1\right)\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15x-3\sqrt{5}=15\left(\sqrt{3}-1\right)\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)
\(\Leftrightarrow15x+2\sqrt{3}x=15\left(\sqrt{3}-1\right)+21=15\sqrt{3}+6\)
\(\Leftrightarrow x=\frac{15\sqrt{3}+6}{15+2\sqrt{3}}=\sqrt{3}\)
\(\Rightarrow y=\sqrt{5}\)
Kết luận nghiệm pt: \(\left\{{}\begin{matrix}x=\sqrt{3}\\y=\sqrt{5}\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}7x=4y\\x-y+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x-4y=0\\7x-7y+21=0\end{matrix}\right.\)
\(\Leftrightarrow\left(7x-4y\right)-\left(7x-7y+21\right)=0\)
\(\Leftrightarrow3x-21=0\Leftrightarrow x=7\)
\(\Rightarrow y=4\)
Kết luận nghiệm pt: \(\left\{{}\begin{matrix}x=7\\y=4\end{matrix}\right.\)
áp dụng phương pháp thế nhé bạn.
Giải hệ \(\left\{{}\begin{matrix}2x^2=1+5xy+y^2\\y\left(\sqrt{y\left(x-2y\right)}+\sqrt{y\left(4y-x\right)}\right)=1\end{matrix}\right.\)
\(ĐK:y\left(x-2y\right)\ge0;y\left(4y-x\right)\ge0\)
Ta thấy \(y=0\) ko phải nghiệm của HPT
Với \(y\ne0\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}1=2x^2-5xy-y^2\\1=y\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\end{matrix}\right.\\ \Leftrightarrow2x^2-5xy-y^2=y\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\\ \Leftrightarrow2\cdot\dfrac{x^2}{y^2}-5\cdot\dfrac{x}{y}-1=\sqrt{\dfrac{x}{y}-2}+\sqrt{4-\dfrac{x}{y}}\)
Đặt \(\dfrac{x}{y}=a\left(y\ne0\right)\)
\(PT\Leftrightarrow2a^2-5a-1=\sqrt{a-2}+\sqrt{4-a}\left(2\le a\le4\right)\\ \Leftrightarrow\left(2a^2-5a-3\right)+\left(1-\sqrt{a-2}\right)+\left(1-\sqrt{4-a}\right)=0\\ \Leftrightarrow\left(a-3\right)\left(2a+1\right)-\dfrac{a-3}{1+\sqrt{a-2}}+\dfrac{a-3}{1+\sqrt{4-a}}=0\\ \Leftrightarrow\left(a-3\right)\left(2a+1-\dfrac{1}{1+\sqrt{a-2}}+\dfrac{1}{1+\sqrt{4-a}}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=3\left(tm\right)\\2a+\dfrac{\sqrt{a-2}}{\sqrt{a-2}+1}+\dfrac{1}{\sqrt{4-a}+1}=0\left(\text{*}\right)\end{matrix}\right.\)
Với \(a\ge2\Leftrightarrow\left(\text{*}\right)\text{ vô nghiệm}\)
\(\Leftrightarrow a=3\Leftrightarrow x=3y\)
Thay vào \(PT\left(1\right)\Leftrightarrow18y^2=1+15y^2+y^2\)
\(\Leftrightarrow y^2=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{\sqrt{2}}\Rightarrow x=\dfrac{3}{\sqrt{2}}\\y=-\dfrac{1}{\sqrt{2}}\Rightarrow x=-\dfrac{3}{\sqrt{2}}\end{matrix}\right.\)
Vậy ...
giải hệ \(\left\{{}\begin{matrix}\sqrt{7x+y}+\sqrt{2x+y}=5\\x-y+\sqrt{2x+y}=1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\sqrt{7x+y}=a\\\sqrt{2x+y}=b\end{matrix}\right.\) thì ta có:
\(\left\{{}\begin{matrix}\sqrt{7x+y}+\sqrt{2x+y}=5\\5\left(x-y\right)+5\sqrt{2x+y}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\3a^2-8b^2+5b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}a=12\\b=-7\end{matrix}\right.\)(l)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Giải hpt sau:
a)\(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}+7=0\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{4x^2-8x+4}+5\sqrt{y^2+4y+4}=13\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}+\dfrac{3y}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
a:
ĐKXĐ: y+1>=0
=>y>=-1
\(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}+7=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4\left(x^2-2x\right)+2\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7\left(x^2-2x\right)=-7\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2-2x=-1\\3\cdot\left(-1\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2-2x+1=0\\2\sqrt{y+1}=-3+7=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\sqrt{y+1}=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-1=0\\y+1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\left(nhận\right)\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{4x^2-8x+4}+5\sqrt{y^2+4y+4}=13\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\cdot\sqrt{\left(2x-2\right)^2}+5\cdot\sqrt{\left(y+2\right)^2}=13\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\4\left|x-1\right|+5\left|y+2\right|=13\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}20\left|x-1\right|-12\left|y+2\right|=28\\20\left|x-1\right|+25\left|y+2\right|=65\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-37\left|y+2\right|=-37\\4\left|x-1\right|+5\left|y+2\right|=13\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left|y+2\right|=1\\4\left|x-1\right|=13-5=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|y+2\right|=1\\\left|x-1\right|=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-1\in\left\{2;-2\right\}\\y+2\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{3;-1\right\}\\y\in\left\{-1;-3\right\}\end{matrix}\right.\)
c: ĐKXĐ: \(\left\{{}\begin{matrix}x< >-1\\y< >-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4\\2-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{x+1}+\dfrac{2}{y+4}=3-4=-1\\\dfrac{2}{x+1}+\dfrac{5}{y+4}=2-9=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{6}{x+1}+\dfrac{4}{y+4}=-2\\\dfrac{6}{x+1}+\dfrac{15}{y+4}=-21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-11}{y+4}=19\\\dfrac{3}{x+1}+\dfrac{2}{y+4}=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y+4=-\dfrac{11}{19}\\\dfrac{3}{x+1}+2:\dfrac{-11}{19}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{11}{19}-4=-\dfrac{87}{19}\\\dfrac{3}{x+1}=-1-2:\dfrac{-11}{19}=-1+2\cdot\dfrac{19}{11}=\dfrac{27}{11}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{87}{19}\\x+1=\dfrac{11}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{87}{19}\\x=\dfrac{2}{9}\end{matrix}\right.\)(nhận)
d:
ĐKXĐ: x<>1 và y<>-2
\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}+\dfrac{3y}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\dfrac{x-1+2}{x-1}+\dfrac{3y+6-6}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}1+\dfrac{2}{x-1}+3-\dfrac{6}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2}{x-1}-\dfrac{6}{y+2}=7-4=3\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{y+2}=-1\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+2=1\\\dfrac{2}{x-1}-5=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-1\\\dfrac{2}{x-1}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x-1=\dfrac{2}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=\dfrac{11}{9}\end{matrix}\right.\left(nhận\right)\)
Giải hệ pt : \(\left\{{}\begin{matrix}\sqrt{7x+y}+\sqrt{2x+y}=5\\x-y+\sqrt{2x+y}=1\end{matrix}\right.\)
Làm biếng gõ lại:
Câu hỏi của Đỗ Thị Ánh Nguyệt - Toán lớp 10 | Học trực tuyến