Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ILoveMath

Giải hệ \(\left\{{}\begin{matrix}2x^2=1+5xy+y^2\\y\left(\sqrt{y\left(x-2y\right)}+\sqrt{y\left(4y-x\right)}\right)=1\end{matrix}\right.\)

Nguyễn Hoàng Minh
1 tháng 12 2021 lúc 14:52

\(ĐK:y\left(x-2y\right)\ge0;y\left(4y-x\right)\ge0\)

Ta thấy \(y=0\) ko phải nghiệm của HPT

Với \(y\ne0\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}1=2x^2-5xy-y^2\\1=y\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\end{matrix}\right.\\ \Leftrightarrow2x^2-5xy-y^2=y\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\\ \Leftrightarrow2\cdot\dfrac{x^2}{y^2}-5\cdot\dfrac{x}{y}-1=\sqrt{\dfrac{x}{y}-2}+\sqrt{4-\dfrac{x}{y}}\)

Đặt \(\dfrac{x}{y}=a\left(y\ne0\right)\)

\(PT\Leftrightarrow2a^2-5a-1=\sqrt{a-2}+\sqrt{4-a}\left(2\le a\le4\right)\\ \Leftrightarrow\left(2a^2-5a-3\right)+\left(1-\sqrt{a-2}\right)+\left(1-\sqrt{4-a}\right)=0\\ \Leftrightarrow\left(a-3\right)\left(2a+1\right)-\dfrac{a-3}{1+\sqrt{a-2}}+\dfrac{a-3}{1+\sqrt{4-a}}=0\\ \Leftrightarrow\left(a-3\right)\left(2a+1-\dfrac{1}{1+\sqrt{a-2}}+\dfrac{1}{1+\sqrt{4-a}}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=3\left(tm\right)\\2a+\dfrac{\sqrt{a-2}}{\sqrt{a-2}+1}+\dfrac{1}{\sqrt{4-a}+1}=0\left(\text{*}\right)\end{matrix}\right.\)

Với \(a\ge2\Leftrightarrow\left(\text{*}\right)\text{ vô nghiệm}\)

\(\Leftrightarrow a=3\Leftrightarrow x=3y\)

Thay vào \(PT\left(1\right)\Leftrightarrow18y^2=1+15y^2+y^2\)

\(\Leftrightarrow y^2=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{\sqrt{2}}\Rightarrow x=\dfrac{3}{\sqrt{2}}\\y=-\dfrac{1}{\sqrt{2}}\Rightarrow x=-\dfrac{3}{\sqrt{2}}\end{matrix}\right.\)

Vậy ...


Các câu hỏi tương tự
ILoveMath
Xem chi tiết
DUTREND123456789
Xem chi tiết
Anime
Xem chi tiết
ILoveMath
Xem chi tiết
huy tạ
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyên Hoàng
Xem chi tiết