so sánh:
a) \(\dfrac{13}{38}\) và \(\dfrac{1}{3}\)
b) \(\sqrt[]{235}\) và 15
so sánh:
a) \(\dfrac{13}{38}\) và \(\dfrac{1}{3}\)
b) \(\sqrt[]{235}\) và 15
\(a,\dfrac{13}{38}\) và \(\dfrac{1}{3}.\)
Ta có: \(\dfrac{13}{38}>\dfrac{13}{39}=\dfrac{1}{3}.\)
\(\Rightarrow\dfrac{13}{38}>\dfrac{1}{3}.\)
\(b,\sqrt{235}\) và \(15.\)
Ta có: \(\sqrt{235};15=\sqrt{225}.\)
Vì \(\sqrt{235}>\sqrt{225}\) (do \(235>225\))
nên \(\sqrt{235}>15.\)
So sánh :
a) \(2^{90}\)và \(5^{36}\) b) \(\sqrt{235}\) và 15 c) \(\dfrac{13}{38}\) và \(\dfrac{1}{3}\)
290=(25)18=3218
536=(52)18=2518
Vì 32>25 nên 3218>2518
=>290>536
b,15=\(\sqrt{225}\) <\(\sqrt{235}\)
=> 15<\(\sqrt{235}\)
c, Ta có: \(\dfrac{1}{3}=\dfrac{13}{39}\)
vì 38<39
nên \(\dfrac{13}{38}>\dfrac{13}{39}\)
a) 290= (210)9mà 210=(25)2
536= (54)9mà 54=(52)2
Do 25>52nên 290>536
Bài 1: so sánh
a) \(2^{300}\) và \(3^{200}\)
b) \(\dfrac{13}{38}\) và \(\dfrac{1}{3}\)
c) \(\sqrt{235}\) và 15
a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Do : \(8^{100}< 9^{100}\)
=> \(2^{300}< 3^{200}\)
b) Do \(\dfrac{13}{38}>\dfrac{13}{39}\)
Mà : \(\dfrac{13}{39}=\dfrac{1}{3}\)
=> \(\dfrac{13}{38}>\dfrac{1}{3}\)
c)Do : \(\sqrt{235}>\sqrt{225}\)
Mà : \(\sqrt{225}=15\)
=> \(\sqrt{235}>15\)
a) Ta có:
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Ta thấy 8<9 suy ra \(8^{100}< 9^{100}\)
Vậy \(2^{300}< 3^{200}\)
b) Ta có:
38<39 suy ra \(\dfrac{13}{38}>\dfrac{13}{39}=\dfrac{1}{3}\)
suy ra \(\dfrac{13}{38}>\dfrac{1}{3}\)
A=\(\dfrac{13^{15}+1}{13^{16}+1}\) và B= \(\dfrac{13^{16}+1}{13^{17}+1}\)
so sánh A và B
\(ta có A=\dfrac{13^{15}+1}{13^{16}+1}=\dfrac{13^{15}}{13^{16}}+1\)=\(\dfrac{1}{13}+1\)
B=\(\dfrac{13^{16}+1}{13^{17}+1}=\dfrac{13^{16}}{13^{17}}+1\)=\(\dfrac{1}{13}+1\)
vậy A=B
\(A=\dfrac{13^{15}+1}{13^{16}+1}vàB=\dfrac{13^{16}+1}{13^{17}+1}\)
ta có
\(\dfrac{13^{16}+1}{13^{17}+1}< 1\Rightarrow\dfrac{13^{16}+1+12}{13^{17}+1+12}=\dfrac{13\left(13^{15}+1\right)}{13\left(13^{16}+1\right)}=\dfrac{13^{15}+1}{13^{16}+1}=A\)
vậy B<A
\(A=\dfrac{13^{15}+1}{13^{16}+1}vàB=\dfrac{13^{16}+1}{13^{17}+1}\)
ta có B<1 nên
\(\dfrac{13^{16}+1}{13^{17}+1}< \dfrac{13^{16}+1+12}{13^{17}+1+12}=\dfrac{13\left(13^{15}+1\right)}{13\left(13^{16}+1\right)}=\dfrac{13^{15}+1}{13^{16}+1}=A\)
Vậy B<A
Hãy so sánh các phân số sau bằng phương pháp so sánh phần bù :
a)\(\dfrac{10}{11}và\dfrac{19}{20}\)
b) \(\dfrac{13}{15}và\dfrac{15}{17}\)
c) \(\dfrac{31}{35}và\dfrac{35}{37}\)
So sánh A và B biết :
\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)
\(B=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{35}}\)
Ta có: \(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{120}+11\)
=10
Ta có: \(B=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{35}}\)
\(=\dfrac{2}{\sqrt{1}+\sqrt{1}}+\dfrac{2}{\sqrt{2}+\sqrt{2}}+...+\dfrac{2}{\sqrt{35}+\sqrt{35}}\)
\(\Leftrightarrow B< 2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{35}+\sqrt{36}}\right)\)
\(\Leftrightarrow B< 2\cdot\left(-\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}-...-\dfrac{1}{\sqrt{35}}+\dfrac{1}{\sqrt{36}}\right)\)
\(\Leftrightarrow B< 2\cdot\left(-\dfrac{1}{1}+\dfrac{1}{6}\right)\)
\(\Leftrightarrow B< -\dfrac{5}{3}< 10=A\)
So sánh phân số \(\dfrac{2012}{2013}\) với A, biết:
A = \(\dfrac{1}{11}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{13}\) + \(\dfrac{1}{14}\) + \(\dfrac{1}{15}\) + ... + \(\dfrac{1}{38}\) + \(\dfrac{1}{39}\) + \(\dfrac{1}{40}\)
Ai xong đầu tiên mình tick nhé.
so sánh
a, \(\frac{13}{38}và\frac{1}{3}\) b, \(\sqrt{235}và15\)
a)\(\frac{13}{38}\)>\(\frac{1}{3}\) b)\(\sqrt{235}\)<15
study well
chúc bạn học tốt
\(A=\dfrac{-3\sqrt{x}+1}{\sqrt{x}-3}\) và \(B=\dfrac{3\sqrt{x}-2}{x-5\sqrt{x}+6}-\dfrac{1}{\sqrt{x}-2}+\dfrac{3\sqrt{x}-2}{3-\sqrt{x}}\) \(\left(x\ge0;x\ne4;x\ne9\right)\). Với \(x>9\), so sánh \(\dfrac{A}{B}\) và 1.