Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Khánh

So sánh A và B biết :

\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)

\(B=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{35}}\)

Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 13:02

Ta có: \(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)

\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{120}+11\)

=10

Ta có: \(B=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{35}}\)

\(=\dfrac{2}{\sqrt{1}+\sqrt{1}}+\dfrac{2}{\sqrt{2}+\sqrt{2}}+...+\dfrac{2}{\sqrt{35}+\sqrt{35}}\)

\(\Leftrightarrow B< 2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{35}+\sqrt{36}}\right)\)

\(\Leftrightarrow B< 2\cdot\left(-\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}-...-\dfrac{1}{\sqrt{35}}+\dfrac{1}{\sqrt{36}}\right)\)

\(\Leftrightarrow B< 2\cdot\left(-\dfrac{1}{1}+\dfrac{1}{6}\right)\)

\(\Leftrightarrow B< -\dfrac{5}{3}< 10=A\)


Các câu hỏi tương tự
Anh Thư Lê
Xem chi tiết
Nguyễn Tấn An
Xem chi tiết
Phương Thảo
Xem chi tiết
PTTD
Xem chi tiết
James Pham
Xem chi tiết
Baekhyun
Xem chi tiết
Trần Khánh Hoài
Xem chi tiết
Lữ Diễm My
Xem chi tiết
Lê Hương Giang
Xem chi tiết